References
- GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022;9:137-50.
- Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, et al. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023;22:236-62.
- Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood) 2018;243:213-21.
- Garcia-Gutierrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A, Manzanares J. Biomarkers in psychiatry: concept, definition, types and relevance to the clinical reality. Front Psychiatry 2020;11:432.
- Venkatasubramanian G, Keshavan MS. Biomarkers in psychiatry: a critique. Ann Neurosci 2016;23:3-5.
- Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders. Nat Med 2016;22:1248-55.
- de Aguiar Neto FS, Rosa JL. Depression biomarkers using non-invasive EEG: a review. Neurosci Biobehav Rev 2019; 105:83-93.
- Jackson AF, Bolger DJ. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology 2014;51:1061-71.
- Tatum WO 4th. Long-term EEG monitoring: a clinical approach to electrophysiology. J Clin Neurophysiol 2001;18:442-55.
- Lopes da Silva F. EEG and MEG: relevance to neuroscience. Neuron 2013;80:1112-28.
- McLoughlin G, Makeig S, Tsuang MT. In search of biomarkers in psychiatry: EEG-based measures of brain function. Am J Med Genet B Neuropsychiatr Genet 2014;165B:111-21.
- Arns M, Conners CK, Kraemer HC. A decade of EEG Theta/ Beta Ratio Research in ADHD: a meta-analysis. J Atten Disord 2013;17:374-83.
- Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res 2005;24:190-8.
- Badrakalimuthu VR, Swamiraju R, de Waal H. EEG in psychiatric practice: to do or not to do? Adv Psychiatr Treat 2011;17: 114-21.
- Rashid M, Sulaiman N, P P Abdul Majeed A, Musa RM, Ab Nasir AF, Bari BS, et al. Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front Neurorobot 2020;14:25.
- Walther D, Viehweg J, Haueisen J, Mader P. A systematic comparison of deep learning methods for EEG time series analysis. Front Neuroinform 2023;17:1067095.
- American Psychiatric Association (APA). Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: APA; 2013.
- Smith K. Mental health: a world of depression. Nature 2014; 515:181.
- Paykel ES, Ramana R, Cooper Z, Hayhurst H, Kerr J, Barocka A. Residual symptoms after partial remission: an important outcome in depression. Psychol Med 1995;25:1171-80.
- Henriques JB, Davidson RJ. Left frontal hypoactivation in depression. J Abnorm Psychol 1991;100:535-45.
- Kolodziej A, Magnuski M, Ruban A, Brzezicka A. No relationship between frontal alpha asymmetry and depressive disorders in a multiverse analysis of five studies. Elife 2021;10:e60595.
- Fitzgerald PJ, Watson BO. Gamma oscillations as a biomarker for major depression: an emerging topic. Transl Psychiatry 2018;8:177.
- Steiger A, Kimura M. Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 2010;44:242-52.
- Merica H, Blois R. Relationship between the time courses of power in the frequency bands of human sleep EEG. Neurophysiol Clin 1997;27:116-28.
- Chriskos P, Frantzidis CA, Nday CM, Gkivogkli PT, Bamidis PD, Kourtidou-Papadeli C. A review on current trends in automatic sleep staging through bio-signal recordings and future challenges. Sleep Med Rev 2021;55:101377.
- Lord B, Allen JJ. Evaluating EEG complexity metrics as biomarkers for depression. Psychophysiology 2023;60:e14274.
- Akdemir Akar S, Kara S, Agambayev S, Bilgic V. Nonlinear analysis of EEGs of patients with major depression during different emotional states. Comput Biol Med 2015;67:49-60.
- Yun S, Jeong B. Aberrant EEG signal variability at a specific temporal scale in major depressive disorder. Clin Neurophysiol 2021;132:1866-77.
- Garrett DD, Samanez-Larkin GR, MacDonald SW, Lindenberger U, McIntosh AR, Grady CL. Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev 2013;37:610-24.
- Ignaccolo M, Latka M, Jernajczyk W, Grigolini P, West BJ. The dynamics of EEG entropy. J Biol Phys 2010;36:185-96.
- Ibanez-Molina AJ, Iglesias-Parro S, Soriano MF, Aznarte JI. Multiscale Lempel-Ziv complexity for EEG measures. Clin Neurophysiol 2015;126:541-8.
- Santopetro NJ, Brush CJ, Bruchnak A, Klawohn J, Hajcak G. A reduced P300 prospectively predicts increased depressive severity in adults with clinical depression. Psychophysiology 2021; 58:e13767.
- Muller-Oerlinghausen B, Berghofer A, Bauer M. Bipolar disorder. Lancet 2002;359:241-7.
- Sigitova E, Fisar Z, Hroudova J, Cikankova T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017;71:77-103.
- Ozerdema A, Guntekind B, Atagune MI, Basar E. Brain oscillations in bipolar disorder in search of new biomarkers. Suppl Clin Neurophysiol 2013;62:207-21.
- Basar E, Guntekin B, Atagun I, Turp Golbasi B, Tulay E, Ozerdem A. Brain's alpha activity is highly reduced in euthymic bipolar disorder patients. Cogn Neurodyn 2012;6:11-20.
- Atagun MI, Guntekin B, Ozerdem A, Tulay E, Basar E. Decrease of theta response in euthymic bipolar patients during an oddball paradigm. Cogn Neurodyn 2013;7:213-23.
- Silverstone PH, Bell EC, Willson MC, Dave S, Wilman AH. Lithium alters brain activation in bipolar disorder in a task- and state-dependent manner: an fMRI study. Ann Gen Psychiatry 2005;4:14.
- Atagun MI, Guntekin B, Masali B, Tulay E, Basar E. Decrease of event-related delta oscillations in euthymic patients with bipolar disorder. Psychiatry Res 2014;223:43-8.
- Kesebir S, Yosmaoglu A. QEEG in affective disorder: about to be a biomarker, endophenotype and predictor of treatment response. Heliyon 2018;4:e00741.
- Fernandez A, Al-Timemy AH, Ferre F, Rubio G, Escudero J. Complexity analysis of spontaneous brain activity in mood disorders: a magnetoencephalography study of bipolar disorder and major depression. Compr Psychiatry 2018;84:112-7.
- Bahrami B, Seyedsadjadi R, Babadi B, Noroozian M. Brain complexity increases in mania. Neuroreport 2005;16:187-91.
- Insel TR. Rethinking schizophrenia. Nature 2010;468:187-93.
- Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging biomarkers in schizophrenia. Am J Psychiatry 2021;178:509-21.
- Perrottelli A, Giordano GM, Brando F, Giuliani L, Mucci A. EEG-based measures in at-risk mental state and early stages of schizophrenia: a systematic review. Front Psychiatry 2021; 12:653642.
- Brockhaus-Dumke A, Schultze-Lutter F, Mueller R, Tendolkar I, Bechdolf A, Pukrop R, et al. Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biol Psychiatry 2008;64: 376-84.
- Rosburg T. Auditory N100 gating in patients with schizophrenia: a systematic meta-analysis. Clin Neurophysiol 2018;129: 2099-111.
- Michie PT, Malmierca MS, Harms L, Todd J. The neurobiology of MMN and implications for schizophrenia. Biol Psychol 2016;116:90-7.
- Hamilton HK, Mathalon DH, Ford JM. P300 in schizophrenia: then and now. Biol Psychol 2024;187:108757.
- McVoy M, Lytle S, Fulchiero E, Aebi ME, Adeleye O, Sajatovic M. A systematic review of quantitative EEG as a possible biomarker in child psychiatric disorders. Psychiatry Res 2019; 279:331-44.
- Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg 2009;109:506-23.
- Kirschstein T, Kohling R. What is the source of the EEG? Clin EEG Neurosci 2009;40:146-9.
- Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012;61:371-85.
- Jamil N, Belkacem AN, Ouhbi S, Lakas A. Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative brain-computer interfaces: a systematic literature review. Sensors (Basel) 2021;21:4754.
- Burle B, Spieser L, Roger C, Casini L, Hasbroucq T, Vidal F. Spatial and temporal resolutions of EEG: is it really black and white?: a scalp current density view. Int J Psychophysiol 2015; 97:210-20.
- Watts D, Pulice RF, Reilly J, Brunoni AR, Kapczinski F, Passos IC. Predicting treatment response using EEG in major depressive disorder: a machine-learning meta-analysis. Transl Psychiatry 2022;12:332.
- Srinivasan R. Methods to improve the spatial resolution of EEG. Int J Bioelectromagn 1999;1:102-11.
- Ferree TC, Luu P, Russell GS, Tucker DM. Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol 2001;112:536-44.
- Vidyaratne LS, Iftekharuddin KM. Real-time epileptic seizure detection using EEG. IEEE Trans Neural Syst Rehabil Eng 2017;25:2146-56.
- Meyer M, Lamers D, Kayhan E, Hunnius S, Oostenveld R. Enhancing reproducibility in developmental EEG research: BIDS, cluster-based permutation tests, and effect sizes. Dev Cogn Neurosci 2021;52:101036.
- Huiskamp G. Interindividual variability of skull conductivity: an EEG-MEG analysis. Int J Bioelectromagn 2008;10:25-30.
- Bigdely-Shamlo N, Mullen T, Kothe C, Su KM, Robbins KA. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinform 2015;9:16.
- Li M, Wang Y, Lopez-Naranjo C, Hu S, Reyes RC, Paz-Linares D, et al. Harmonized-Multinational qEEG norms (HarMNqEEG). Neuroimage 2022;256:119190.
- McGorry P, Keshavan M, Goldstone S, Amminger P, Allott K, Berk M, et al. Biomarkers and clinical staging in psychiatry. World Psychiatry 2014;13:211-23.
- Pratt J, Hall J. Biomarkers in neuropsychiatry: a prospect for the twenty-first century? Curr Top Behav Neurosci 2018;40:3-10.
- Kaiser T, Feng G. Modeling psychiatric disorders for developing effective treatments. Nat Med 2015;21:979-88.
- Abreu R, Simoes M, Castelo-Branco M. Pushing the limits of EEG: estimation of large-scale functional brain networks and their dynamics validated by simultaneous fMRI. Front Neurosci 2020;14:323.
- He B, Liu Z. Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE Rev Biomed Eng 2008; 1:23-40.
- Taberna GA, Marino M, Ganzetti M, Mantini D. Spatial localization of EEG electrodes using 3D scanning. J Neural Eng 2019;16:026020.
- Harati A, Lopez S, Obeid I, Picone J, Jacobson MP, Tobochnik S. The TUH EEG corpus: a big data resource for automated EEG interpretation. In: 2014 IEEE Signal Processing in Medicine and Biology Symposium. Philadelphia, PA: IEEE; 2014. p. 1-5.
- Xu P, Huang R, Wang J, Van Dam NT, Xie T, Dong Z, et al. Different topological organization of human brain functional networks with eyes open versus eyes closed. Neuroimage 2014; 90:246-55.
- Smit DJ, Andreassen OA, Boomsma DI, Burwell SJ, Chorlian DB, de Geus EJ, et al. Large-scale collaboration in ENIGMAEEG: a perspective on the meta-analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity. Brain Behav 2021;11:e02188.
- Jung TP, Humphries C, Lee TW, Makeig S, McKeown MJ, Iragui V, et al. Removing electroencephalographic artifacts: comparison between ICA and PCA. In: Proceedings of the 1998 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing VIII; September 1998; Paris. IEEE; 1998. p. 63-72.
- Pernet CR, Appelhoff S, Gorgolewski KJ, Flandin G, Phillips C, Delorme A, et al. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci Data 2019;6:103.
- Hassan F, Hussain SF. Review of EEG signals classification using machine learning and deep-learning techniques. In: Qaisar SM, Nisar H, Subasi A, editors. Advances in non-invasive biomedical signal sensing and processing with machine learning. Cham, Switzerland: Springer; 2023.
- Ranjan R, Sahana BC, Bhandari AK. Deep learning models for diagnosis of schizophrenia using EEG signals: emerging trends, challenges, and prospects. Arch Comput Methods Eng 2024; 31:2345-84.
- Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting black-box models: a review on explainable artificial intelligence. Cogn Comput 2024;16:45-74.
- Kocak B, Cuocolo R, dos Santos DP, Stanzione A, Ugga L. Must-have qualities of clinical research on artificial intelligence and machine learning. Balkan Med J 2023;40:3-12.
- Balki I, Amirabadi A, Levman J, Martel AL, Emersic Z, Meden B, et al. Sample-size determination methodologies for machine learning in medical imaging research: a systematic review. Can Assoc Radiol J 2019;70:344-53.
- Rahul J, Sharma D, Sharma LD, Nanda U, Sarkar AK. A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Front Hum Neurosci 2024;18:1347082.
- Chen X, Xie H, Tao X, Wang FL, Leng M, Lei B. Artificial intelligence and multimodal data fusion for smart healthcare: topic modeling and bibliometrics. Artif Intell Rev 2024;57:91.