DOI QR코드

DOI QR Code

Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review

  • Seokho Yun (Department of Psychiatry, Yeungnam University College of Medicine)
  • Received : 2024.07.01
  • Accepted : 2024.08.09
  • Published : 2024.10.31

Abstract

Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress and functional impairment, leading to social and economic losses. Biomarkers are essential for diagnosing, predicting, treating, and monitoring various diseases. However, their absence in psychiatry is linked to the complex structure of the brain and the lack of direct monitoring modalities. This review examines the potential of electroencephalography (EEG) as a neurophysiological tool for identifying psychiatric biomarkers. EEG noninvasively measures brain electrophysiological activity and is used to diagnose neurological disorders, such as depression, bipolar disorder (BD), and schizophrenia, and identify psychiatric biomarkers. Despite extensive research, EEG-based biomarkers have not been clinically utilized owing to measurement and analysis constraints. EEG studies have revealed spectral and complexity measures for depression, brainwave abnormalities in BD, and power spectral abnormalities in schizophrenia. However, no EEG-based biomarkers are currently used clinically for the treatment of psychiatric disorders. The advantages of EEG include real-time data acquisition, noninvasiveness, cost-effectiveness, and high temporal resolution. Challenges such as low spatial resolution, susceptibility to interference, and complexity of data interpretation limit its clinical application. Integrating EEG with other neuroimaging techniques, advanced signal processing, and standardized protocols is essential to overcome these limitations. Artificial intelligence may enhance EEG analysis and biomarker discovery, potentially transforming psychiatric care by providing early diagnosis, personalized treatment, and improved disease progression monitoring.

Keywords

References

  1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022;9:137-50.
  2. Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, et al. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023;22:236-62.
  3. Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood) 2018;243:213-21.
  4. Garcia-Gutierrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A, Manzanares J. Biomarkers in psychiatry: concept, definition, types and relevance to the clinical reality. Front Psychiatry 2020;11:432.
  5. Venkatasubramanian G, Keshavan MS. Biomarkers in psychiatry: a critique. Ann Neurosci 2016;23:3-5.
  6. Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders. Nat Med 2016;22:1248-55.
  7. de Aguiar Neto FS, Rosa JL. Depression biomarkers using non-invasive EEG: a review. Neurosci Biobehav Rev 2019; 105:83-93.
  8. Jackson AF, Bolger DJ. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology 2014;51:1061-71.
  9. Tatum WO 4th. Long-term EEG monitoring: a clinical approach to electrophysiology. J Clin Neurophysiol 2001;18:442-55.
  10. Lopes da Silva F. EEG and MEG: relevance to neuroscience. Neuron 2013;80:1112-28.
  11. McLoughlin G, Makeig S, Tsuang MT. In search of biomarkers in psychiatry: EEG-based measures of brain function. Am J Med Genet B Neuropsychiatr Genet 2014;165B:111-21.
  12. Arns M, Conners CK, Kraemer HC. A decade of EEG Theta/ Beta Ratio Research in ADHD: a meta-analysis. J Atten Disord 2013;17:374-83.
  13. Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res 2005;24:190-8.
  14. Badrakalimuthu VR, Swamiraju R, de Waal H. EEG in psychiatric practice: to do or not to do? Adv Psychiatr Treat 2011;17: 114-21.
  15. Rashid M, Sulaiman N, P P Abdul Majeed A, Musa RM, Ab Nasir AF, Bari BS, et al. Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front Neurorobot 2020;14:25.
  16. Walther D, Viehweg J, Haueisen J, Mader P. A systematic comparison of deep learning methods for EEG time series analysis. Front Neuroinform 2023;17:1067095.
  17. American Psychiatric Association (APA). Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: APA; 2013.
  18. Smith K. Mental health: a world of depression. Nature 2014; 515:181.
  19. Paykel ES, Ramana R, Cooper Z, Hayhurst H, Kerr J, Barocka A. Residual symptoms after partial remission: an important outcome in depression. Psychol Med 1995;25:1171-80.
  20. Henriques JB, Davidson RJ. Left frontal hypoactivation in depression. J Abnorm Psychol 1991;100:535-45.
  21. Kolodziej A, Magnuski M, Ruban A, Brzezicka A. No relationship between frontal alpha asymmetry and depressive disorders in a multiverse analysis of five studies. Elife 2021;10:e60595.
  22. Fitzgerald PJ, Watson BO. Gamma oscillations as a biomarker for major depression: an emerging topic. Transl Psychiatry 2018;8:177.
  23. Steiger A, Kimura M. Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 2010;44:242-52.
  24. Merica H, Blois R. Relationship between the time courses of power in the frequency bands of human sleep EEG. Neurophysiol Clin 1997;27:116-28.
  25. Chriskos P, Frantzidis CA, Nday CM, Gkivogkli PT, Bamidis PD, Kourtidou-Papadeli C. A review on current trends in automatic sleep staging through bio-signal recordings and future challenges. Sleep Med Rev 2021;55:101377.
  26. Lord B, Allen JJ. Evaluating EEG complexity metrics as biomarkers for depression. Psychophysiology 2023;60:e14274.
  27. Akdemir Akar S, Kara S, Agambayev S, Bilgic V. Nonlinear analysis of EEGs of patients with major depression during different emotional states. Comput Biol Med 2015;67:49-60.
  28. Yun S, Jeong B. Aberrant EEG signal variability at a specific temporal scale in major depressive disorder. Clin Neurophysiol 2021;132:1866-77.
  29. Garrett DD, Samanez-Larkin GR, MacDonald SW, Lindenberger U, McIntosh AR, Grady CL. Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev 2013;37:610-24.
  30. Ignaccolo M, Latka M, Jernajczyk W, Grigolini P, West BJ. The dynamics of EEG entropy. J Biol Phys 2010;36:185-96.
  31. Ibanez-Molina AJ, Iglesias-Parro S, Soriano MF, Aznarte JI. Multiscale Lempel-Ziv complexity for EEG measures. Clin Neurophysiol 2015;126:541-8.
  32. Santopetro NJ, Brush CJ, Bruchnak A, Klawohn J, Hajcak G. A reduced P300 prospectively predicts increased depressive severity in adults with clinical depression. Psychophysiology 2021; 58:e13767.
  33. Muller-Oerlinghausen B, Berghofer A, Bauer M. Bipolar disorder. Lancet 2002;359:241-7.
  34. Sigitova E, Fisar Z, Hroudova J, Cikankova T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017;71:77-103.
  35. Ozerdema A, Guntekind B, Atagune MI, Basar E. Brain oscillations in bipolar disorder in search of new biomarkers. Suppl Clin Neurophysiol 2013;62:207-21.
  36. Basar E, Guntekin B, Atagun I, Turp Golbasi B, Tulay E, Ozerdem A. Brain's alpha activity is highly reduced in euthymic bipolar disorder patients. Cogn Neurodyn 2012;6:11-20.
  37. Atagun MI, Guntekin B, Ozerdem A, Tulay E, Basar E. Decrease of theta response in euthymic bipolar patients during an oddball paradigm. Cogn Neurodyn 2013;7:213-23.
  38. Silverstone PH, Bell EC, Willson MC, Dave S, Wilman AH. Lithium alters brain activation in bipolar disorder in a task- and state-dependent manner: an fMRI study. Ann Gen Psychiatry 2005;4:14.
  39. Atagun MI, Guntekin B, Masali B, Tulay E, Basar E. Decrease of event-related delta oscillations in euthymic patients with bipolar disorder. Psychiatry Res 2014;223:43-8.
  40. Kesebir S, Yosmaoglu A. QEEG in affective disorder: about to be a biomarker, endophenotype and predictor of treatment response. Heliyon 2018;4:e00741.
  41. Fernandez A, Al-Timemy AH, Ferre F, Rubio G, Escudero J. Complexity analysis of spontaneous brain activity in mood disorders: a magnetoencephalography study of bipolar disorder and major depression. Compr Psychiatry 2018;84:112-7.
  42. Bahrami B, Seyedsadjadi R, Babadi B, Noroozian M. Brain complexity increases in mania. Neuroreport 2005;16:187-91.
  43. Insel TR. Rethinking schizophrenia. Nature 2010;468:187-93.
  44. Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging biomarkers in schizophrenia. Am J Psychiatry 2021;178:509-21.
  45. Perrottelli A, Giordano GM, Brando F, Giuliani L, Mucci A. EEG-based measures in at-risk mental state and early stages of schizophrenia: a systematic review. Front Psychiatry 2021; 12:653642.
  46. Brockhaus-Dumke A, Schultze-Lutter F, Mueller R, Tendolkar I, Bechdolf A, Pukrop R, et al. Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biol Psychiatry 2008;64: 376-84.
  47. Rosburg T. Auditory N100 gating in patients with schizophrenia: a systematic meta-analysis. Clin Neurophysiol 2018;129: 2099-111.
  48. Michie PT, Malmierca MS, Harms L, Todd J. The neurobiology of MMN and implications for schizophrenia. Biol Psychol 2016;116:90-7.
  49. Hamilton HK, Mathalon DH, Ford JM. P300 in schizophrenia: then and now. Biol Psychol 2024;187:108757.
  50. McVoy M, Lytle S, Fulchiero E, Aebi ME, Adeleye O, Sajatovic M. A systematic review of quantitative EEG as a possible biomarker in child psychiatric disorders. Psychiatry Res 2019; 279:331-44.
  51. Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg 2009;109:506-23.
  52. Kirschstein T, Kohling R. What is the source of the EEG? Clin EEG Neurosci 2009;40:146-9.
  53. Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012;61:371-85.
  54. Jamil N, Belkacem AN, Ouhbi S, Lakas A. Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative brain-computer interfaces: a systematic literature review. Sensors (Basel) 2021;21:4754.
  55. Burle B, Spieser L, Roger C, Casini L, Hasbroucq T, Vidal F. Spatial and temporal resolutions of EEG: is it really black and white?: a scalp current density view. Int J Psychophysiol 2015; 97:210-20.
  56. Watts D, Pulice RF, Reilly J, Brunoni AR, Kapczinski F, Passos IC. Predicting treatment response using EEG in major depressive disorder: a machine-learning meta-analysis. Transl Psychiatry 2022;12:332.
  57. Srinivasan R. Methods to improve the spatial resolution of EEG. Int J Bioelectromagn 1999;1:102-11.
  58. Ferree TC, Luu P, Russell GS, Tucker DM. Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol 2001;112:536-44.
  59. Vidyaratne LS, Iftekharuddin KM. Real-time epileptic seizure detection using EEG. IEEE Trans Neural Syst Rehabil Eng 2017;25:2146-56.
  60. Meyer M, Lamers D, Kayhan E, Hunnius S, Oostenveld R. Enhancing reproducibility in developmental EEG research: BIDS, cluster-based permutation tests, and effect sizes. Dev Cogn Neurosci 2021;52:101036.
  61. Huiskamp G. Interindividual variability of skull conductivity: an EEG-MEG analysis. Int J Bioelectromagn 2008;10:25-30.
  62. Bigdely-Shamlo N, Mullen T, Kothe C, Su KM, Robbins KA. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinform 2015;9:16.
  63. Li M, Wang Y, Lopez-Naranjo C, Hu S, Reyes RC, Paz-Linares D, et al. Harmonized-Multinational qEEG norms (HarMNqEEG). Neuroimage 2022;256:119190.
  64. McGorry P, Keshavan M, Goldstone S, Amminger P, Allott K, Berk M, et al. Biomarkers and clinical staging in psychiatry. World Psychiatry 2014;13:211-23.
  65. Pratt J, Hall J. Biomarkers in neuropsychiatry: a prospect for the twenty-first century? Curr Top Behav Neurosci 2018;40:3-10.
  66. Kaiser T, Feng G. Modeling psychiatric disorders for developing effective treatments. Nat Med 2015;21:979-88.
  67. Abreu R, Simoes M, Castelo-Branco M. Pushing the limits of EEG: estimation of large-scale functional brain networks and their dynamics validated by simultaneous fMRI. Front Neurosci 2020;14:323.
  68. He B, Liu Z. Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE Rev Biomed Eng 2008; 1:23-40.
  69. Taberna GA, Marino M, Ganzetti M, Mantini D. Spatial localization of EEG electrodes using 3D scanning. J Neural Eng 2019;16:026020.
  70. Harati A, Lopez S, Obeid I, Picone J, Jacobson MP, Tobochnik S. The TUH EEG corpus: a big data resource for automated EEG interpretation. In: 2014 IEEE Signal Processing in Medicine and Biology Symposium. Philadelphia, PA: IEEE; 2014. p. 1-5.
  71. Xu P, Huang R, Wang J, Van Dam NT, Xie T, Dong Z, et al. Different topological organization of human brain functional networks with eyes open versus eyes closed. Neuroimage 2014; 90:246-55.
  72. Smit DJ, Andreassen OA, Boomsma DI, Burwell SJ, Chorlian DB, de Geus EJ, et al. Large-scale collaboration in ENIGMAEEG: a perspective on the meta-analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity. Brain Behav 2021;11:e02188.
  73. Jung TP, Humphries C, Lee TW, Makeig S, McKeown MJ, Iragui V, et al. Removing electroencephalographic artifacts: comparison between ICA and PCA. In: Proceedings of the 1998 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing VIII; September 1998; Paris. IEEE; 1998. p. 63-72.
  74. Pernet CR, Appelhoff S, Gorgolewski KJ, Flandin G, Phillips C, Delorme A, et al. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci Data 2019;6:103.
  75. Hassan F, Hussain SF. Review of EEG signals classification using machine learning and deep-learning techniques. In: Qaisar SM, Nisar H, Subasi A, editors. Advances in non-invasive biomedical signal sensing and processing with machine learning. Cham, Switzerland: Springer; 2023.
  76. Ranjan R, Sahana BC, Bhandari AK. Deep learning models for diagnosis of schizophrenia using EEG signals: emerging trends, challenges, and prospects. Arch Comput Methods Eng 2024; 31:2345-84.
  77. Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting black-box models: a review on explainable artificial intelligence. Cogn Comput 2024;16:45-74.
  78. Kocak B, Cuocolo R, dos Santos DP, Stanzione A, Ugga L. Must-have qualities of clinical research on artificial intelligence and machine learning. Balkan Med J 2023;40:3-12.
  79. Balki I, Amirabadi A, Levman J, Martel AL, Emersic Z, Meden B, et al. Sample-size determination methodologies for machine learning in medical imaging research: a systematic review. Can Assoc Radiol J 2019;70:344-53.
  80. Rahul J, Sharma D, Sharma LD, Nanda U, Sarkar AK. A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Front Hum Neurosci 2024;18:1347082.
  81. Chen X, Xie H, Tao X, Wang FL, Leng M, Lei B. Artificial intelligence and multimodal data fusion for smart healthcare: topic modeling and bibliometrics. Artif Intell Rev 2024;57:91.