DOI QR코드

DOI QR Code

Inhaled Corticosteroids and the Risk of Nontuberculous Mycobacterial Infection in Chronic Airway Disease: A Nationwide Population-Based Study

  • Eun Chong Yoon (Department of Health Administration and Management, College of Medical Science, Soonchunhyang University) ;
  • Hyewon Lee (Department of Software Convergence, Soonchunhyang University Graduate School) ;
  • Hee-Young Yoon (Department of Health Administration and Management, College of Medical Science, Soonchunhyang University)
  • Received : 2024.03.20
  • Accepted : 2024.05.29
  • Published : 2024.10.31

Abstract

Background: Chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are increasingly being treated with inhaled corticosteroid (ICS). However, ICSs carry potential infection risks, particularly nontuberculous mycobacteria (NTM). This study investigated the association between ICS use and NTM infection risk using national insurance data, particularly for individuals with chronic airway diseases. Methods: We conducted a nationwide population-based study using data from the National Health Insurance Service-National Sample Cohort in South Korea from 2002 to 2019. The cohort included 57,553 patients diagnosed with COPD or asthma. To assess the risk of NTM infection, we used Cox proportional hazards models and propensity score-based inverse probability of treatment weighting (IPTW) to ensure a balanced analysis of covariates. Results: Of the 57,553 patients (mean age 56.0 years, 43.2% male), 16.5% used ICS and 83.5% did not. We identified 63 NTM infection cases, including nine among ICS users and 54 among non-users. Before and after IPTW, ICS use was associated with a higher risk of NTM infection (adjusted hazard ratio [HR], 4.01; 95% confidence interval [CI], 1.48 to 15.58). Higher risks were significant for patients ≥65 years (adjusted HR, 6.40; 95% CI, 1.28 to 31.94), females (adjusted HR, 10.91; 95% CI, 2.24 to 53.20), never-smokers (adjusted HR, 6.31; 95% CI, 1.49 to 26.64), systemic steroid users (adjusted HR, 50.19; 95% CI, 8.07 to 312.19), and those with higher comorbidity scores (adjusted HR, 6.64; 95% CI, 1.19 to 37.03). Conclusion: ICS use in patients with chronic airway diseases might increase the risk of NTM infection, particularly in older females, never-smokers, and systemic steroid users.

Keywords

Acknowledgement

This study was supported by a Soonchunhyang University Research Fund.

References

  1. Rhee CK, Moon JY, Joo H, Jung JY, Lee JK, Min KH, et al. Summary of Korean asthma guideline. Tuberc Respir Dis (Seoul) 2023;86:158-65.
  2. Park YB, Rhee CK, Yoon HK, Oh YM, Lim SY, Lee JH, et al. Revised (2018) COPD clinical practice guideline of the Korean Academy of Tuberculosis and Respiratory Disease: a summary. Tuberc Respir Dis (Seoul) 2018;81:261-73.
  3. Choi JY, Yoon HK, Lee JH, Yoo KH, Kim BY, Bae HW, et al. Nationwide use of inhaled corticosteroids by South Korean asthma patients: an examination of the Health Insurance Review and Service database. J Thorac Dis 2018;10:5405-13.
  4. Savran O, Godtfredsen N, Sorensen T, Jensen C, Ulrik CS. COPD patients prescribed inhaled corticosteroid in primary care: time for re-assessment based on exacerbation rate and blood eosinophils? Respir Res 2021;22:54.
  5. Lee SH, Lee JH, Yoon HI, Park HY, Kim TH, Yoo KH, et al. Change in inhaled corticosteroid treatment and COPD exacerbations: an analysis of real-world data from the KOLD/KOCOSS cohorts. Respir Res 2019;20:62.
  6. Patel R, Naqvi SA, Griffiths C, Bloom CI. Systemic adverse effects from inhaled corticosteroid use in asthma: a systematic review. BMJ Open Respir Res 2020;7:e000756.
  7. Pandya D, Puttanna A, Balagopal V. Systemic effects of inhaled corticosteroids: an overview. Open Respir Med J 2014;8:59-65.
  8. Pinto CR, Almeida NR, Marques TS, Yamamura LL, Costa LA, Souza-Machado A. Local adverse effects associated with the use of inhaled corticosteroids in patients with moderate or severe asthma. J Bras Pneumol 2013;39:409-17.
  9. Lee EG, Kim Y, Hwang YI, Yoo KH, Lee SE, Jung KY, et al. Comparison of pneumonia incidence between long-acting muscarinic antagonist and inhaled corticosteroid plus long-acting beta agonist in patients with COPD. Sci Rep 2023;13:8183.
  10. Lee JH, Park YH, Kang DR, Lee SJ, Lee MK, Kim SH, et al. Risk of pneumonia associated with inhaled corticosteroid in patients with chronic obstructive pulmonary disease: a Korean population-based study. Int J Chron Obstruct Pulmon Dis 2020;15:3397-406.
  11. Chen H, Sun J, Huang Q, Liu Y, Yuan M, Ma C, et al. Inhaled corticosteroids and the pneumonia risk in patients with chronic obstructive pulmonary disease: a meta-analysis of randomized controlled trials. Front Pharmacol 2021;12:691621.
  12. Tashkin DP, Miravitlles M, Celli BR, Metzdorf N, Mueller A, Halpin DM, et al. Concomitant inhaled corticosteroid use and the risk of pneumonia in COPD: a matched-subgroup post hoc analysis of the UPLIFT® trial. Respir Res 2018;19:196.
  13. Fukushima C, Matsuse H, Tomari S, Obase Y, Miyazaki Y, Shimoda T, et al. Oral candidiasis associated with inhaled corticosteroid use: comparison of fluticasone and beclomethasone. Ann Allergy Asthma Immunol 2003;90:646-51.
  14. Luque-Paz D, Tattevin P, Loubet P, Benezit F, Thibault V, Laine F, et al. Chronic use of inhaled corticosteroids in patients admitted for respiratory virus infections: a 6-year prospective multicenter study. Sci Rep 2022;12:4199.
  15. Koh WJ. Nontuberculous mycobacteria: overview. Microbiol Spectr 2017;5:TNMI7-0024-2016.
  16. Winthrop KL, Marras TK, Adjemian J, Zhang H, Wang P, Zhang Q. Incidence and prevalence of nontuberculous mycobacterial lung disease in a large U.S. Managed Care Health Plan, 2008-2015. Ann Am Thorac Soc 2020;17:178-85.
  17. Diel R, Jacob J, Lampenius N, Loebinger M, Nienhaus A, Rabe KF, et al. Burden of non-tuberculous mycobacterial pulmonary disease in Germany. Eur Respir J 2017;49:1602109.
  18. Shu CC, Wei YF, Chen KH, Chuang S, Wang YH, Wang CY, et al. Inhaled corticosteroids increase risk of nontuberculous mycobacterial lung disease: a nested case-control study and meta-analysis. J Infect Dis 2022;225:627-36.
  19. Liu VX, Winthrop KL, Lu Y, Sharifi H, Nasiri HU, Ruoss SJ. Association between inhaled corticosteroid use and pulmonary nontuberculous mycobacterial infection. Ann Am Thorac Soc 2018;15:1169-76.
  20. Andrejak C, Nielsen R, Thomsen VO, Duhaut P, Sorensen HT, Thomsen RW. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax 2013;68:256-62.
  21. Brode SK, Campitelli MA, Kwong JC, Lu H, Marchand-Austin A, Gershon AS, et al. The risk of mycobacterial infections associated with inhaled corticosteroid use. Eur Respir J 2017;50:1700037.
  22. Yu I, Hong SH, Chang MS, Lee SJ, Yong SJ, Lee WY, et al. Inhaled corticosteroids and the risk of nontuberculous mycobacterial pulmonary disease in chronic obstructive pulmonary disease: findings from a nationwide population-based study. J Pers Med 2023;13:1088.
  23. Hojo M, Iikura M, Hirano S, Sugiyama H, Kobayashi N, Kudo K. Increased risk of nontuberculous mycobacterial infection in asthmatic patients using long-term inhaled corticosteroid therapy. Respirology 2012;17:185-90.
  24. Axson EL, Bual N, Bloom CI, Quint JK. Risk factors and secondary care utilisation in a primary care population with non-tuberculous mycobacterial disease in the UK. Eur J Clin Microbiol Infect Dis 2019;38:117-24.
  25. Lee J, Lee JS, Park SH, Shin SA, Kim K. Cohort profile: the National Health Insurance Service-National Sample Cohort (NHIS-NSC), South Korea. Int J Epidemiol 2017;46:e15.
  26. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med 2015;34:3661-79.
  27. van Eeden SF, Akata K. Macrophages-the immune effector guardians of the lung: impact of corticosteroids on their functional responses. Clin Sci (Lond) 2020;134:1631-5.
  28. Prasla Z, Sutliff RL, Sadikot RT. Macrophage signaling pathways in pulmonary nontuberculous mycobacteria infections. Am J Respir Cell Mol Biol 2020;63:144-51.
  29. Keir HR, Contoli M, Chalmers JD. Inhaled corticosteroids and the lung microbiome in COPD. Biomedicines 2021;9:1312.
  30. Sin DD. Chronic obstructive pulmonary disease and the airway microbiome: what respirologists need to know. Tuberc Respir Dis (Seoul) 2023;86:166-75.
  31. Thornton CS, Mellett M, Jarand J, Barss L, Field SK, Fisher DA. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. Eur Respir Rev 2021;30:200299.
  32. Miravitlles M, Auladell-Rispau A, Monteagudo M, Vazquez-Niebla JC, Mohammed J, Nunez A, et al. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur Respir Rev 2021;30:210075.
  33. Mirsaeidi M, Sadikot RT. Gender susceptibility to mycobacterial infections in patients with non-CF bronchiectasis. Int J Mycobacteriol 2015;4:92-6.
  34. Shteinberg M, Stein N, Adir Y, Ken-Dror S, Shitrit D, Bendayan D, et al. Prevalence, risk factors and prognosis of nontuberculous mycobacterial infection among people with bronchiectasis: a population survey. Eur Respir J 2018;51:1702469.
  35. Maiz L, Giron R, Olveira C, Vendrell M, Nieto R, Martinez-Garcia MA. Prevalence and factors associated with nontuberculous mycobacteria in non-cystic fibrosis bronchiectasis: a multicenter observational study. BMC Infect Dis 2016;16:437.