초록
This research introduces an innovative approach to revolutionize inventory management strategies amid unpredictable demand and uncertainties. Introducing a Fuzzy Economic Order Quantity (EOQ) model, enriched with the centroid defuzzification method and supervised machine learning, the study offers a comprehensive solution for optimized decision-making. The model transcends traditional inventory paradigms by seamlessly integrating fuzzy logic and advanced machine learning, emphasizing adaptability in fast-paced business landscapes. The research unfolds against the backdrop of agile inventory management advocacy, with key contributions including the centroid defuzzification method for crisp interpretation and the integration of linear regression for cost prediction. The study employs a real-life bakery scenario to demonstrate the efficacy of both crisp and fuzzy models, underscoring the latter's superiority in handling uncertainties. Comparative analysis reveals nuanced impacts of uncertainty on inventory decisions, while linear regression establishes statistical relationships for cost predictions. The findings underscore the pivotal role of fuzzy logic in optimizing inventory management, paving the way for future enhancements, advanced machine learning integration, and real-world validation. This research not only contributes to adaptive inventory management evolution but also sets the stage for further exploration and refinement in dynamic business landscapes.