DOI QR코드

DOI QR Code

Hepatocyte Growth Factor-mediated Regulation of OCT4 in human Mesenchymal Stem Cells

  • Ji-Eun Oh (Department of Biomedical Laboratory Science, Far East University) ;
  • Jung-Yoon Yoo (Department of Biomedical Laboratory Science, Yonsei University Mirae Campus) ;
  • Eun Ju Lee (Biomedical Research Institute, Seoul National University Hospital) ;
  • Sung Ryul Yu (Department of Clinical Laboratory Science, Semyung University)
  • 투고 : 2024.09.04
  • 심사 : 2024.09.24
  • 발행 : 2024.09.30

초록

Mesenchymal stem cells (MSCs) hold great promise as a source of stem cells for therapy, but several limitations remain. We previously proposed that human embryonic stem cell-derived MSCs (hE-MSCs) expressing higher hepatocyte growth factor (HGF) levels were better alternatives, exhibiting greater expandability in vitro and greater therapeutic capacity in vivo. In this study, we aimed to examine the regulation of OCT4 expression in stem cells and to elucidate its underlying mechanism of transcriptional regulation of OCT4. We detected higher expression of OCT4, a stemness-associated gene in hE-MSCs than in human bone marrow-derived MSCs (hBM-MSCs). To determine the underlying regulatory mechanism of OCT4 expression in human MSCs (hMSCs), ELISA was performed using cell culture supernatants of hMSCs. Unlike fibroblast growth factor 2 or vascular endothelial growth factor, HGF was strongly expressed in hE-MSCs, also HGF treatment significantly increased OCT4 expression in hBM-MSC. Moreover, senescence-associated heterochromatin foci were decreased in HGF-treated hBM-MSCs compared with those in the HGF non-treated group. HGF increased Rb phosphorylation, and we confirmed the increased binding of E2F1 to the OCT4 promoter region at -233 from the transcription start point in the presence of HGF. Taken together, these results suggest that HGF-mediated regulation of OCT4 via E2F1 can help enhance the lifespan of hBM-MSCs during in vitro expansion.

키워드

참고문헌

  1. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kourembanas S. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med. 2009. 180: 1122-1130. 10.1164/rccm.200902-0242OC.
  2. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007. 8: 729-740. 10.1038/nrm2233.
  3. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005. 120: 513-522. 10.1016/j.cell.2005.02.003.
  4. Cao Z, Xie Y, Yu L, Li Y, Wang Y. Hepatocyte growth factor (HGF) and stem cell factor (SCF) maintained the stemness of human bone marrow mesenchymal stem cells (hBMSCs) during long-term expansion by preserving mitochondrial function via the PI3K/AKT, ERK1/2, and STAT3 signaling pathways. Stem Cell Res Ther. 2020. 11: 329. 10.1186/s13287-020-01830-4.
  5. Chandra T, Kirschner K, Thuret JY, Pope BD, Ryba T, Newman S, Ahmed K, Samarajiwa SA, Salama R, Carroll T, Stark R, Janky R, Narita M, Xue L, Chicas A, Nunez S, Janknecht R, Hayashi-Takanaka Y, Wilson MD, Marshall A, Odom DT, Babu MM, Bazett-Jones DP, Tavare S, Edwards PA, Lowe SW, Kimura H, Gilbert DM, Narita M. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell. 2012. 47: 203-214. 10.1016/j.molcel.2012.06.010.
  6. Chang C, Yan J, Yao Z, Zhang C, Li X, Mao HQ. Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies. Adv Healthc Mater. 2021. 10: e2001689. 10.1002/adhm.202001689.
  7. Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021. 22: 75-95. 10.1038/s41580-020-00314-w.
  8. Fischer M, Muller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol. 2017. 52: 638-662. 10.1080/10409238.2017.1360836.
  9. Fu Y, Hu C, Du P, Huang G. E2F1 Maintains Gastric Cancer Stemness Properties by Regulating Stemness-Associated Genes. J Oncol. 2021. 2021: 6611327. 10.1155/2021/6611327.
  10. Kim J, Chu J, Shen X, Wang J, Orkin SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 2008. 132: 1049-1061. 10.1016/j.cell.2008.02.039.
  11. Lee EJ, Hwang I, Lee JY, Park JN, Kim KC, Kim GH, Kang CM, Kim I, Lee SY, Kim HS. Hepatocyte Growth Factor Improves the Therapeutic Efficacy of Human Bone Marrow Mesenchymal Stem Cells via RAD51. Mol Ther. 2018. 26: 845-859. 10.1016/j.ymthe.2017.12.015.
  12. Lee EJ, Lee HN, Kang HJ, Kim KH, Hur J, Cho HJ, Lee J, Chung HM, Cho J, Cho MY, Oh SK, Moon SY, Park YB, Kim HS. Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells. Tissue Eng Part A. 2010. 16: 705-715. 10.1089/ten.tea.2008.0596.
  13. Lee J, Go Y, Kang I, Han YM, Kim J. Oct-4 controls cell-cycle progression of embryonic stem cells. Biochem J. 2010. 426: 171-181. 10.1042/BJ20091439.
  14. Leshem Y, Halevy O. Phosphorylation of pRb is required for HGF-induced muscle cell proliferation and is p27kip1-dependent. J Cell Physiol. 2002. 191: 173-182. 10.1002/jcp.10089.
  15. Lu G, Li Y, Ma Y, Lu J, Chen Y, Jiang Q, Qin Q, Zhao L, Huang Q, Luo Z, Huang S, Wei Z. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res. 2018. 37: 289-299. 10.1186/s13046-018-0945-6.
  16. Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 2014. 3: e02872. 10.7554/eLife.02872.
  17. Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA, Myers MP, Lowe SW. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 2006. 126: 503-514. 10.1016/j.cell.2006.05.052.
  18. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003. 113: 703-716. 10.1016/s0092-8674(03)00401-x.
  19. Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science. 1992. 258: 424-429. 10.1126/science.1411535.
  20. Orkin SH. Chipping away at the embryonic stem cell network. Cell. 2005. 122: 828-830. 10.1016/j.cell.2005.09.002.
  21. Paluvai H, Di Giorgio E, Brancolini C. The Histone Code of Senescence. Cells. 2020. 9: 466. 10.3390/cells9020466.
  22. Park BW, Jung SH, Das S, Lee SM, Park JH, Kim H, Hwang JW, Lee S, Kim HJ, Kim HY, Jung S, Cho DW, Jang J, Ban K, Park HJ. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv. 2020. 6: eaay6994. 10.1126/sciadv.aay6994.
  23. Patra SK. Roles of OCT4 in pathways of embryonic development and cancer progression. Mech Ageing Dev. 2020. 189: 111286. 10.1016/j.mad.2020.111286.
  24. Piccinato CA, Sertie AL, Torres N, Ferretti M, Antonioli E. High OCT4 and Low p16(INK4A) Expressions Determine In vitro Lifespan of Mesenchymal Stem Cells. Stem Cells Int. 2015. 2015: 369828. 10.1155/2015/369828.
  25. Schoeftner S, Scarola M, Comisso E, Schneider C, Benetti R. An Oct4-pRb axis, controlled by MiR-335, integrates stem cell self-renewal and cell cycle control. Stem Cells. 2013. 31: 717-728. 10.1002/stem.1315.
  26. Schulz L, Tyler J. Heterochromatin focuses on senescence. Mol Cell. 2005. 17: 168-170. 10.1016/j.molcel.2005.01.003.
  27. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008. 3: e2213. 10.1371/journal.pone.0002213.
  28. Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C, Zhao Z, Li L, Li B. Mesenchymal Stem/Stromal Cell Senescence: Hallmarks, Mechanisms, and Combating Strategies. Stem Cells Transl Med. 2022. 11: 356-371. 10.1093/stcltm/szac004.
  29. Wright A, Arthaud-Day ML, Weiss ML. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front Cell Dev Biol. 2021. 9: 632717. 10.3389/fcell.2021.632717.
  30. Zhao Y, Ye W, Wang YD, Chen WD. HGF/c-Met: A Key Promoter in Liver Regeneration. Front Pharmacol. 2022. 13: 808855. 10.3389/fphar.2022.808855.