DOI QR코드

DOI QR Code

Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors

  • Kaniz Fatema (Department of Genetic Engineering & Biotechnology, University of Dhaka) ;
  • Zinia Haidar (Department of Genetic Engineering & Biotechnology, University of Dhaka) ;
  • Md Tamzid Hossain Tanim (Department of Genetic Engineering & Biotechnology, University of Dhaka) ;
  • Sudipta Deb Nath (Department of Genetic Engineering & Biotechnology, University of Dhaka) ;
  • Abu Ashfaqur Sajib (Department of Genetic Engineering & Biotechnology, University of Dhaka)
  • Received : 2023.10.18
  • Accepted : 2024.07.10
  • Published : 2024.10.15

Abstract

Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-of point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic.

Keywords

Acknowledgement

This study was supported by a Grant on Advanced Research in Education (GARE) from the Ministry of Education, Bangladesh. The authors are thankful for the support.

References

  1. Shaji E, Santosh M, Sarath KV et al (2021) Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci Front 12:101079. https://doi.org/10.1016/j.gsf.2020.08.015 
  2. Mishra D, Das BS, Sinha T et al (2021) Living with arsenic in the environment: an examination of current awareness of farmers in the Bengal basin using hybrid feature selection and machine learning. Environ Int 153:106529. https://doi.org/10.1016/j.envint.2021.106529 
  3. Rahman MM, Naidu R, Bhattacharya P (2009) Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health 31:9-21. https://doi.org/10.1007/s10653-008-9233-2 
  4. Foust RD, Mohapatra P, Compton-O'Brien A-M, Reifel J (2004) Groundwater arsenic in the Verde Valley in central Arizona, USA. Appl Geochem 19:251-255. https://doi.org/10.1016/j.apgeochem.2003.09.011 
  5. George CM, Sima L, Arias MHJ et al (2014) Arsenic exposure in drinking water: an unrecognized health threat in Peru. Bull World Health Organ 92:565-572. https://doi.org/10.2471/BLT.13.128496 
  6. Rowland HAL, Omoregie EO, Millot R et al (2011) Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl Geochem 26:1-17. https://doi.org/10.1016/j.apgeochem.2010.10.006 
  7. Nurchi VM, Buha Djordjevic A, Crisponi G et al (2020) Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules 10:235. https://doi.org/10.3390/biom10020235 
  8. Stanisavljev B, Bulat Z, Buha A, Matovic V (2013) Arsenic in drinking water in Northern region of Serbia. E3S Web of Conferences 1:24006. https://doi.org/10.1051/e3sconf/20130124006 
  9. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391-396. https://doi.org/10.1136/pmj.79.933.391 
  10. Edmonds JS, Francesconi KA (1987) Transformations of arsenic in the marine environment. Experientia 43:553-557. https://doi.org/10.1007/BF02143584 
  11. Azeh Engwa G, Udoka Ferdinand P, Nweke Nwalo F, N Unachukwu M (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Poisoning in the modern world-new tricks for an old dog? IntechOpen 
  12. Fu Z, Xi S (2020) The effects of heavy metals on human metabolism. Toxicol Mech Methods 30:167-176. https://doi.org/10.1080/15376516.2019.1701594 
  13. Baker BA, Cassano VA, Murray C (2018) Arsenic exposure, assessment, toxicity, diagnosis, and management. J Occup Environ Med 60:e634-e639. https://doi.org/10.1097/JOM.0000000000001485 
  14. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1-16. https://doi.org/10.1016/S0378-4274(02)00084-X 
  15. Hall AH (2002) Chronic arsenic poisoning. Toxicol Lett 128:69-72. https://doi.org/10.1016/S0378-4274(01)00534-3 
  16. Mink PJ, Alexander DD, Barraj LM et al (2008) Low-level arsenic exposure in drinking water and bladder cancer: a review and meta-analysis. Regul Toxicol Pharmacol 52:299-310. https://doi.org/10.1016/j.yrtph.2008.08.010 
  17. Chen CJ, Wang SL, Chiou JM et al (2007) Arsenic and diabetes and hypertension in human populations: a review. Toxicol Appl Pharmacol 222:298-304. https://doi.org/10.1016/j.taap.2006.12.032 
  18. Farkhondeh T, Samarghandian S, Azimi-Nezhad M (2019) The role of arsenic in obesity and diabetes. J Cell Physiol 234:12516-12529. https://doi.org/10.1002/jcp.28112 
  19. Shoily SS, Ahsan T, Fatema K, Sajib AA (2021) Common genetic variants and pathways in diabetes and associated complications and vulnerability of populations with different ethnic origins. Sci Rep 11:7504. https://doi.org/10.1038/s41598-021-86801-2 
  20. Sung T-C, Huang J-W, Guo H-R (2015) Association between arsenic exposure and diabetes: a meta-analysis. Biomed Res Int 2015:1-10. https://doi.org/10.1155/2015/368087 
  21. Navas-Acien A (2008) Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA 300:814. https://doi.org/10.1001/jama.300.7.814 
  22. Shakya A, Dodson M, Artiola JF et al (2023) Arsenic in drinking water and diabetes. Water (Basel) 15:1751. https://doi.org/10.3390/w15091751 
  23. Sertorio MN, Souza ACF, Bastos DSS et al (2019) Arsenic exposure intensifies glycogen nephrosis in diabetic rats. Environ Sci Pollut Res 26:12459-12469. https://doi.org/10.1007/s11356-019-04597-1 
  24. Souza ACF, Bastos DSS, Sertorio MN et al (2019) Combined effects of arsenic exposure and diabetes on male reproductive functions. Andrology 7:730-740. https://doi.org/10.1111/andr.12613 
  25. Machado-Neves M, Souza ACF (2023) The effect of arsenical compounds on mitochondrial metabolism. Mitochondrial intoxication. Elsevier, Amsterdam, pp 379-407 
  26. Tseng C-H (2004) The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Appl Pharmacol 197:67-83. https://doi.org/10.1016/j.taap.2004.02.009 
  27. Liu S, Guo X, Wu B et al (2014) Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep 4:6894. https://doi.org/10.1038/srep06894 
  28. Pan W-C, Kile ML, Seow WJ et al (2013) Genetic susceptible locus in NOTCH2 interacts with arsenic in drinking water on risk of type 2 diabetes. PLoS One 8:e70792. https://doi.org/10.1371/journal.pone.0070792 
  29. Kawata K, Yokoo H, Shimazaki R, Okabe S (2007) Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol 41:3769-3774. https://doi.org/10.1021/es062717d 
  30. Kawata K, Shimazaki R, Okabe S (2009) Comparison of gene expression profiles in HepG2 cells exposed to arsenic, cadmium, nickel, and three model carcinogens for investigating the mechanisms of metal carcinogenesis. Environ Mol Mutagen 50:46-59. https://doi.org/10.1002/em.20438 
  31. Matulis SM, Morales AA, Yehiayan L et al (2009) Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line. Mol Cancer Ther 8:1197-1206. https://doi.org/10.1158/1535-7163.MCT-08-1072 
  32. Hara-Yamamura H, Taga T, Kawata K, Okabe S (2013) DNA microarray analysis for HepG2 cells exposed to arsenic trioxide. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48441 
  33. Cordova EJ, Martinez-Hernandez A, Uribe-Figueroa L et al (2014) The NRF2-KEAP1 pathway is an early responsive gene network in arsenic exposed lymphoblastoid cells. PLoS One 9:e88069. https://doi.org/10.1371/journal.pone.0088069 
  34. Qiu L-Q, Abey S, Harris S et al (2015) Global analysis of posttranscriptional gene expression in response to sodium arsenite. Environ Health Perspect 123:324-330. https://doi.org/10.1289/ehp.1408626 
  35. Garcia-Pardo A, Amigo-Jimenez I, Aguilera-Montilla N, Bailon E (2016) Regulation of gene expression in chronic lymphocytic leukemia cells in response to arsenic trioxide. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78207 
  36. Wang HY, Zhang B, Zhou JN et al (2019) Arsenic trioxide inhibits liver cancer stem cells and metastasis by targeting SRF/MCM7 complex. Cell Death Dis 10:453. https://doi.org/10.1038/s41419-019-1676-0 
  37. Xie L, Hu W-Y, Hu D-P et al (2020) Effects of inorganic arsenic on human prostate stem-progenitor cell transformation, autophagic flux blockade, and NRF2 pathway activation. Environ Health Perspect 128:067008. https://doi.org/10.1289/EHP6471 
  38. Pihlajamaki J, Boes T, Kim E-Y et al (2009) Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab 94:3521-3529. https://doi.org/10.1210/jc.2009-0212 
  39. Dominguez V, Raimondi C, Somanath S et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic β cells. J Biol Chem 286:4216-4225. https://doi.org/10.1074/jbc.M110.200295 
  40. Taneera J, Fadista J, Ahlqvist E et al (2013) Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Mol Cell Endocrinol 375:35-42. https://doi.org/10.1016/j.mce.2013.05.003 
  41. Keller P, Gburcik V, Petrovic N et al (2011) Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC EndocrDisord 11:7. https://doi.org/10.1186/1472-6823-11-7 
  42. Jin W, Goldfine AB, Boes T et al (2011) Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Clin Investig 121:918-929. https://doi.org/10.1172/JCI41940 
  43. Edgar R (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207-210. https://doi.org/10.1093/nar/30.1.207 
  44. Dennis G, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:R60. https://doi.org/10.1186/gb-2003-4-9-r60 
  45. Zhou G, Soufan O, Ewald J et al (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234-W241. https://doi.org/10.1093/nar/gkz240 
  46. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-D452. https://doi.org/10.1093/nar/gku1003 
  47. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498-2504. https://doi.org/10.1101/gr.1239303 
  48. Chin CH, Chen SH, Wu HH et al (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8:S11. https://doi.org/10.1186/1752-0509-8-S4-S11 
  49. Lambert SA, Jolma A, Campitelli LF et al (2018) The human transcription factors. Cell 172:650-665. https://doi.org/10.1016/j.cell.2018.01.029 
  50. Kanehisa M (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27-30. https://doi.org/10.1093/nar/28.1.27 
  51. Liberzon A, Birger C, Thorvaldsdottir H et al (2015) The molecular signatures database hallmark gene set collection. Cell Syst 1:417-425. https://doi.org/10.1016/j.cels.2015.12.004 
  52. Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf 14:128. https://doi.org/10.1186/1471-2105-14-128 
  53. Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628-2629. https://doi.org/10.1093/bioinformatics/btz931 
  54. Janky R, Verfaillie A, Imrichova H et al (2014) iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 10:e1003731. https://doi.org/10.1371/journal.pcbi.1003731 
  55. Gaubatz S, Lindeman GJ, Ishida S et al (2000) E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol Cell 6:729-735. https://doi.org/10.1016/S1097-2765(00)00071-X 
  56. Xie H, Kang Y, Wang S et al (2020) E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet 16:e1008655. https://doi.org/10.1371/journal.pgen.1008655 
  57. Wang B, Guo H, Yu H et al (2021) The role of the transcription factor EGR1 in cancer. Front Oncol 11:642547. https://doi.org/10.3389/fonc.2021.642547 
  58. Zaldumbide A, Carlotti F, Pognonec P, Boulukos KE (2002) The role of the Ets2 transcription factor in the proliferation, maturation, and survival of mouse thymocytes. J Immunol 169:4873-4881. https://doi.org/10.4049/jimmunol.169.9.4873 
  59. Hasegawa A, Shimizu R (2017) GATA1 activity governed by configurations of cis-acting elements. Front Oncol 6:269. https://doi.org/10.3389/fonc.2016.00269 
  60. Bresnick EH, Jung MM, Katsumura KR (2020) Human GATA2 mutations and hematologic disease: how many paths to pathogenesis? Blood Adv 4:4584-4592. https://doi.org/10.1182/bloodadvances.2020002953 
  61. Pastoret A, Marcos R, Sampayo-Reyes A et al (2013) Inhibition of hepatocyte nuclear factor 1 and 4 alpha (HNF1α and HNF4α) as a mechanism of arsenic carcinogenesis. Arch Toxicol 87:1001-1012. https://doi.org/10.1007/s00204-012-0948-6 
  62. Engler MJ, Mimura J, Yamazaki S, Itoh K (2020) JDP2 is directly regulated by ATF4 and modulates TRAIL sensitivity by suppressing the ATF4-DR5 axis. FEBS Open Bio 10:2771-2779. https://doi.org/10.1002/2211-5463.13017 
  63. Blau L, Knirsh R, Ben-Dror I et al (2012) Aberrant expression of c-Jun in glioblastoma by internal ribosome entry site (IRES)-mediated translational activation. Proc Natl Acad Sci USA 109:E2875-E2884. https://doi.org/10.1073/pnas.1203659109 
  64. Gupta A, Hossain MM, Miller N et al (2016) NCOA3 coactivator is a transcriptional target of XBP1 and regulates PERK-eIF2α-ATF4 signalling in breast cancer. Oncogene 35:5860-5871. https://doi.org/10.1038/onc.2016.121 
  65. Ding W, Tong Y, Zhang X et al (2016) Study of arsenic sulfide in solid tumor cells reveals regulation of nuclear factors of activated T-cells by PML and p53. Sci Rep 6:19793. https://doi.org/10.1038/srep19793 
  66. Park SW, Kim J, Oh S et al (2022) PHF20 is crucial for epigenetic control of starvation-induced autophagy through enhancer activation. Nucleic Acids Res 50:7856-7872. https://doi.org/10.1093/nar/gkac584 
  67. Badeaux AI, Yang Y, Cardenas K et al (2012) Loss of the methyl lysine efector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem 287:429-437. https://doi.org/10.1074/jbc.M111.271163 
  68. Millet C, Zhang YE (2007) Roles of Smad3 in TGF-β signaling during carcinogenesis. Crit Rev Eukaryot Gene Expr 17:281-293. https://doi.org/10.1615/CritRevEukarGeneExpr.v17.i4.30 
  69. Nakajima R, Deguchi R, Komori H et al (2023) The TFDP1 gene coding for DP1, the heterodimeric partner of the transcription factor E2F, is a target of deregulated E2F. BiochemBiophys Res Commun 663:154-162. https://doi.org/10.1016/j.bbrc.2023.04.092 
  70. Zhu M, Li X, Sun R et al (2021) The C/EBPβ-dependent induction of TFDP2 facilitates porcine reproductive and respiratory syndrome virus proliferation. Virol Sin 36:1341-1351. https://doi.org/10.1007/s12250-021-00403-w 
  71. Li X, Chen Y, Gong S et al (2023) Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 9:93. https://doi.org/10.1038/s41420-023-01395-0 
  72. Lehalle D, Vabres P, Sorlin A et al (2020) De novo mutations in the X-linked TFE3 gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features. J Med Genet 57:808-819. https://doi.org/10.1136/jmedgenet-2019-106508 
  73. Wulf A, Wetzel MG, Kebenko M et al (2008) The role of thyroid hormone receptor DNA binding in negative thyroid hormonemediated gene transcription. J Mol Endocrinol 41:25-34. https://doi.org/10.1677/JME-08-0023 
  74. Martin EM, Styblo M, Fry RC (2017) Genetic and epigenetic mechanisms underlying arsenic-associated diabetes mellitus: a perspective of the current evidence. Epigenomics 9:701-710. https://doi.org/10.2217/epi-2016-0097 
  75. Panico P, Velasco M, Salazar AM et al (2022) Is arsenic exposure a risk factor for metabolic syndrome? A review of the potential mechanisms. Front Endocrinol (Lausanne) 13:2. https://doi.org/10.3389/fendo.2022.878280 
  76. Paul DS, Hernandez-Zavala A, Walton FS et al (2007) Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: Development of a mouse model for arsenic-induced diabetes. Toxicol Appl Pharmacol 222:305-314. https://doi.org/10.1016/j.taap.2007.01.010 
  77. Rehman K, Fatima F, Akash MSH (2019) Biochemical investigation of association of arsenic exposure with risk factors of diabetes mellitus in Pakistani population and its validation in animal model. Environ Monit Assess 191:511. https://doi.org/10.1007/s10661-019-7670-2 
  78. Izquierdo-Vega JA, Soto CA, Sanchez-Pena LC et al (2006) Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett 160:135-142. https://doi.org/10.1016/j.toxlet.2005.06.018 
  79. Del Razo LM, Garcia-Vargas GG, Valenzuela OL et al (2011) Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapan and Lagunera regions in Mexico. Environ Health 10:73. https://doi.org/10.1186/1476-069X-10-73 
  80. Kirkley AG, Carmean CM, Ruiz D et al (2018) Arsenic exposure induces glucose intolerance and alters global energy metabolism. Am J Physiol Regul Integr Compar Physiol 314:R294-R303. https://doi.org/10.1152/ajpregu.00522.2016 
  81. Sheldon LA (2017) Inhibition of E2F1 activity and cell cycle progression by arsenic via retinoblastoma protein. Cell Cycle 16:2058-2072. https://doi.org/10.1080/15384101.2017.1338221 
  82. Iglesias A, Murga M, Laresgoiti U et al (2004) Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice. J Clin Investig 113:1398-1407. https://doi.org/10.1172/JCI18879 
  83. Shirakawa J, Togashi Y, Basile G et al (2022) E2F1 transcription factor mediates a link between fat and islets to promote β cell proliferation in response to acute insulin resistance. Cell Rep 41:111436. https://doi.org/10.1016/j.celrep.2022.111436 
  84. Lu T (2001) Application of cDNA microarray to the study of arsenic-induced liver diseases in the population of Guizhou, China. Toxicol Sci 59:185-192. https://doi.org/10.1093/toxsci/59.1.185 
  85. Munoz A, Chervona Y, Hall M et al (2015) Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water. Toxicol Appl Pharmacol 284:330-338. https://doi.org/10.1016/j.taap.2015.02.025 
  86. Xu Q, Liang Y, Liu X et al (2019) miR-132 inhibits high glucose-induced vascular smooth muscle cell proliferation and migration by targeting E2F5. Mol Med Rep 20:2012-2020. https://doi.org/10.3892/mmr.2019.10380 
  87. Andrew AS, Bernardo V, Warnke LA et al (2007) Exposure to arsenic at levels found in U.S. drinking water modifies expression in the mouse lung. Toxicol Sci 100:75-87. https://doi.org/10.1093/toxsci/kfm200 
  88. Phookphan P, Navasumrit P, Waraprasit S et al (2017) Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children. Toxicol Appl Pharmacol 316:36-47. https://doi.org/10.1016/j.taap.2016.12.015 
  89. Shi Q, Sutariya V, Bishayee A, Bhatia D (2014) Sequential activation of Elk-1/Egr-1/GADD45α by arsenic. Oncotarget 5:3862-3870. https://doi.org/10.18632/oncotarget.1995 
  90. Karthikkeyan G, Nareshkumar RN, Aberami S et al (2018) Hyperglycemia induced early growth response-1 regulates vascular dysfunction in human retinal endothelial cells. Microvasc Res 117:37-43. https://doi.org/10.1016/j.mvr.2018.01.002 
  91. Wang D, Guan M-P, Zheng Z-J et al (2015) Transcription factor Egr1 is involved in high glucose-induced proliferation and fibrosis in rat glomerular mesangial cells. Cell Physiol Biochem 36:2093-2107. https://doi.org/10.1159/000430177 
  92. Riedmann C, Ma Y, Melikishvili M et al (2015) Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genom 16:212. https://doi.org/10.1186/s12864-015-1295-9 
  93. Ge H, Han Z, Tian P et al (2015) VEGFA expression is inhibited by arsenic trioxide in HUVECs through the upregulation of Ets-2 and miRNA-126. PLoS One 10:e0135795. https://doi.org/10.1371/journal.pone.0135795 
  94. Seeger FH, Chen L, Spyridopoulos I et al (2009) Downregulation of ETS rescues diabetes-induced reduction of endothelial progenitor cells. PLoS One 4:e4529. https://doi.org/10.1371/journal.pone.0004529 
  95. Medina S, Zhang H, Santos-Medina LV et al (2022) Arsenic impairs the lineage commitment of hematopoietic progenitor cells through the attenuation of GATA-2 DNA binding activity. Toxicol Appl Pharmacol 452:116193. https://doi.org/10.1016/j.taap.2022.116193 
  96. Jeong H-S, Lee D-H, Kim S-H et al (2022) Hyperglycemia-induced oxidative stress promotes tumor metastasis by upregulating vWF expression in endothelial cells through the transcription factor GATA1. Oncogene 41:1634-1646. https://doi.org/10.1038/s41388-022-02207-y 
  97. Azizi SM, Sarhangi N, Afshari M et al (2019) Association analysis of the HNF4A common genetic variants with type 2 diabetes mellitus risk. Int J Mol Cell Med 8:56-62. https://doi.org/10.22088/IJMCM.BUMS.8.2.56 
  98. Love-Gregory L, Permutt MA (2007) HNF4A genetic variants: role in diabetes. Curr Opin Clin NutrMetab Care 10:397-402. https://doi.org/10.1097/MCO.0b013e3281e3888d 
  99. Chandran S, Rajadurai VS, Hoi WH et al (2020) A novel HNF4A mutation causing three phenotypic forms of glucose dysregulation in a family. Front Pediatr 8:320. https://doi.org/10.3389/fped.2020.00320 
  100. States JC, Singh AV, Knudsen TB et al (2012) Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis. PLoS One 7:e38713. https://doi.org/10.1371/journal.pone.0038713 
  101. Kaur T, Singh A, Goel R (2011) Mechanisms pertaining to arsenic toxicity. Toxicol Int 18:87. https://doi.org/10.4103/0971-6580.84258 
  102. Serna R, Ramrakhiani A, Hernandez JC et al (2022) c-JUN inhibits mTORC2 and glucose uptake to promote self-renewal and obesity. Science 25:104325. https://doi.org/10.1016/j.isci.2022.104325 
  103. Dai J, Xu M, Zhang X et al (2019) Bi-directional regulation of TGF-β/Smad pathway by arsenic: a systemic review and meta-analysis of in vivo and in vitro studies. Life Sci 220:92-105. https://doi.org/10.1016/j.lfs.2019.01.042 
  104. Wang H-L, Wei B, He H-J et al (2022) Smad3 deficiency improves islet-based therapy for diabetes and diabetic kidney injury by promoting β cell proliferation via the E2F3-dependent mechanism. Theranostics 12:379-395. https://doi.org/10.7150/thno.67034 
  105. Sheng J, Wang L, Tang PM-K et al (2021) Smad3 deficiency promotes beta cell proliferation and function in db/db mice via restoring Pax6 expression. Theranostics 11:2845-2859. https://doi.org/10.7150/thno.51857 
  106. Biernacka A, Cavalera M, Wang J et al (2015) Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circ Heart Fail 8:788-798. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001963 
  107. Davey JC, Nomikos AP, Wungjiranirun M et al (2008) Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environ Health Perspect 116:165-172. https://doi.org/10.1289/ehp.10131 
  108. Jornayvaz FR, Lee H-Y, Jurczak MJ et al (2012) Thyroid hormone receptor-α gene knockout mice are protected from diet-induced hepatic insulin resistance. Endocrinology 153:583-591. https://doi.org/10.1210/en.2011-1793 
  109. Menghini R, Marchetti V, Cardellini M et al (2005) Phosphorylation of GATA2 by Akt increases adipose tissue differentiation and reduces adipose tissue-related inflammation. Circulation 111:1946-1953. https://doi.org/10.1161/01.CIR.0000161814.02942.B2 
  110. Nakane T, Matsumoto S, Iida S et al (2021) Candidate plasticity gene 16 and jun dimerization protein 2 are involved in the suppression of insulin gene expression in rat pancreatic INS-1 β-cells. Mol Cell Endocrinol 527:111240. https://doi.org/10.1016/j.mce.2021.111240 
  111. Kang T, Ge M, Wang R et al (2019) Arsenic sulfide induces RAG1-dependent DNA damage for cell killing by inhibiting NFATc3 in gastric cancer cells. J Exp Clin Cancer Res 38:487. https://doi.org/10.1186/s13046-019-1471-x 
  112. Cai Y, Yao H, Sun Z et al (2021) Role of NFAT in the progression of diabetic atherosclerosis. Front Cardiovasc Med 8:635172. https://doi.org/10.3389/fcvm.2021.635172 
  113. Miao A, Lu J, Wang Y et al (2020) Identification of the aberrantly methylated differentially expressed genes in proliferative diabetic retinopathy. Exp Eye Res 199:108141. https://doi.org/10.1016/j.exer.2020.108141 
  114. Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173-194. https://doi.org/10.1146/annurev-pathol-012513-104649 
  115. Nakagawa Y, Shimano H, Yoshikawa T et al (2006) TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nat Med 12:107-113. https://doi.org/10.1038/nm1334 
  116. Kim MY, Jo SH, Park JM et al (2013) Adenovirus-mediated overexpression of Tcfe3 ameliorates hyperglycaemia in a mouse model of diabetes by upregulating glucokinase in the liver. Diabetologia 56:635-643. https://doi.org/10.1007/s00125-012-2807-7 
  117. Iwasaki H, Naka A, Iida KT et al (2012) TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am J Physiol-Endocrinol Metab 302:E896-E902. https://doi.org/10.1152/ajpendo.00204.2011 
  118. Pastore N, Vainshtein A, Klisch TJ et al (2017) TFE3 regulates whole-body energy metabolism in cooperation with TFEB. EMBO Mol Med 9:605-621. https://doi.org/10.15252/emmm.201607204 
  119. Chang AS, Hathaway CK, Smithies O, Kakoki M (2016) Transforming growth factor-β1 and diabetic nephropathy. Am J Physiol Renal Physiol 310:F689-F696. https://doi.org/10.1152/ajprenal.00502.2015 
  120. Heydarpour F, Sajadimajd S, Mirzarazi E et al (2020) Involvement of TGF-β and autophagy pathways in pathogenesis of diabetes: a comprehensive review on biological and pharmacological insights. Front Pharmacol 11:498758. https://doi.org/10.3389/fphar.2020.498758 
  121. Alonso-Magdalena P, Quesada I, Nadal A (2011) Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 7:346-353. https://doi.org/10.1038/nrendo.2011.56 
  122. Ma Y, Yang W, Song M et al (2018) Type 2 diabetes and risk of colorectal cancer in two large U.S. prospective cohorts. Br J Cancer 119:1436-1442. https://doi.org/10.1038/s41416-018-0314-4 
  123. Yu G-H, Li S-F, Wei R, Jiang Z (2022) Diabetes and colorectal cancer risk: clinical and therapeutic implications. J Diabetes Res 2022:1-16. https://doi.org/10.1155/2022/1747326 
  124. Li D (2012) Diabetes and pancreatic cancer. Mol Carcinog 51:64-74. https://doi.org/10.1002/mc.20771 
  125. Tseng C-H (2014) Diabetes and gastric cancer: the potential links. World J Gastroenterol 20:1701. https://doi.org/10.3748/wjg.v20.i7.1701 
  126. El-Badawy A, El-Badri N (2016) The cell cycle as a brake for β-cell regeneration from embryonic stem cells. Stem Cell Res Ther 7:9. https://doi.org/10.1186/s13287-015-0274-z 
  127. Wang H-L, Wang L, Zhao C-Y, Lan H-Y (2022) Role of TGF-beta signaling in beta cell proliferation and function in diabetes. Biomolecules 12:373. https://doi.org/10.3390/biom12030373 
  128. Lee J-H, Mellado-Gil JM, Bahn YJ et al (2020) Protection from β-cell apoptosis by inhibition of TGF-β/Smad3 signaling. Cell Death Dis 11:184. https://doi.org/10.1038/s41419-020-2365-8 
  129. Zeng Q, Du S, Xu Y et al (2022) Assessing the potential value and mechanism of Kaji-Ichigoside F1 on arsenite-induced skin cell senescence. Oxid Med Cell Longev 2022:1-16. https://doi.org/10.1155/2022/9574473 
  130. Okamura K, Miki D, Nohara K (2013) Inorganic arsenic exposure induces E2F-dependent G0/G1 arrest via an increase in retinoblastoma family protein p130 in B-cell lymphoma A20 cells. Genes Cells 18:839-849. https://doi.org/10.1111/gtc.12079 
  131. Medda N, De SK, Maiti S (2021) Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation. Ecotoxicol Environ Saf 208:111752. https://doi.org/10.1016/j.ecoenv.2020.111752 
  132. Hu Y, Li J, Lou B et al (2020) The role of reactive oxygen species in arsenic toxicity. Biomolecules 10:240. https://doi.org/10.3390/biom10020240 
  133. Narasimhan A, Flores RR, Robbins PD, Niedernhofer LJ (2021) Role of cellular senescence in type II diabetes. Endocrinology 162:bqab136. https://doi.org/10.1210/endocr/bqab136 
  134. Taguchi K, Fukami K (2023) RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 14:1128872. https://doi.org/10.3389/fphar.2023.1128872 
  135. Kay AM, Simpson CL, Stewart JA (2016) The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res 2016:1-8. https://doi.org/10.1155/2016/6809703 
  136. Nagy T, Fisi V, Frank D et al (2019) Hyperglycemia-induced aberrant cell proliferation; a metabolic challenge mediated by protein O-GlcNAc modification. Cells 8:999. https://doi.org/10.3390/cells8090999 
  137. Sabir S, Akash MSH, Fiayyaz F et al (2019) Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: inserting the association into perspectives. Biomed Pharmacother 114:108802. https://doi.org/10.1016/j.biopha.2019.108802 
  138. Wang W, Zheng F, Zhang A (2021) Arsenic-induced lung inflammation and fibrosis in a rat model: contribution of the HMGB1/RAGE, PI3K/AKT, and TGF-β1/SMAD pathways. Toxicol Appl Pharmacol 432:115757. https://doi.org/10.1016/j.taap.2021.115757 
  139. Foo N, Ko C, Chu C et al (2020) Arsenic compounds activate the MAPK and caspase pathways to induce apoptosis in OEC-M1 gingival epidermal carcinoma. Oncol Rep 44:2701-2714. https://doi.org/10.3892/or.2020.7793 
  140. Zhou P, Wan X, Zou Y et al (2020) Transforming growth factor beta (TGF-β) is activated by the CtBP2-p300-AP1 transcriptional complex in chronic renal failure. Int J Biol Sci 16:204-215. https://doi.org/10.7150/ijbs.38841 
  141. Dong H, Zhang Y, Huang Y, Deng H (2022) Pathophysiology of RAGE in inflammatory diseases. Front Immunol 13:931473. https://doi.org/10.3389/fmmu.2022.931473 
  142. Klec C, Ziomek G, Pichler M et al (2019) Calcium signaling in ss-cell physiology and pathology: a revisit. Int J Mol Sci 20:6110. https://doi.org/10.3390/ijms20246110 
  143. Guerrero-Hernandez A, Verkhratsky A (2014) Calcium signalling in diabetes. Cell Calcium 56:297-301. https://doi.org/10.1016/j.ceca.2014.08.009 
  144. Hsu WL, Tsai MH, Lin MW et al (2012) Differential effects of arsenic on calcium signaling in primary keratinocytes and malignant (HSC-1) cells. Cell Calcium 52:161-169. https://doi.org/10.1016/j.ceca.2012.05.007 
  145. Garcia-Vaz E, McNeilly AD, Berglund LM et al (2020) Inhibition of NFAT signaling restores microvascular endothelial function in diabetic mice. Diabetes 69:424-435. https://doi.org/10.2337/db18-0870 
  146. Park Y-J, Yoo S-A, Kim M, Kim W-U (2020) The role of calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases. Front Immunol 11:195. https://doi.org/10.3389/fmmu.2020.00195 
  147. Tantiwong P, Shanmugasundaram K, Monroy A et al (2010) NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. Am J Physiol-Endocrinol Metab 299:E794-E801. https://doi.org/10.1152/ajpendo.00776.2009 
  148. Suryavanshi SV, Kulkarni YA (2017) NF-κβ: a potential target in the management of vascular complications of diabetes. Front Pharmacol 8:798. https://doi.org/10.3389/fphar.2017.00798 
  149. Alzamil H (2020) Elevated serum TNF-α is related to obesity in type 2 diabetes mellitus and is associated with glycemic control and insulin resistance. J Obes 2020:1-5. https://doi.org/10.1155/2020/5076858 
  150. Mohallem R, Aryal UK (2020) Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci Rep 10:20878. https://doi.org/10.1038/s41598-020-77914-1 
  151. Felix K, Manna SK, Wise K et al (2005) Low levels of arsenite activates nuclear factor-kB and activator protein-1 in immortalized mesencephalic cells. J Biochem Mol Toxicol 19:67-77. https://doi.org/10.1002/jbt.20062 
  152. da Veiga GL, Della Nina Rafo MG, da Costa Aguiar Alves B et al (2019) NF-κB gene expression in peripheral blood and urine in early diagnosis of diabetic nephropathy-A liquid biopsy approach. URINE 1:24-28. https://doi.org/10.1016/j.urine.2020.05.005 
  153. Deng B, Song A, Zhang C (2023) Cell-cycle dysregulation in the pathogenesis of diabetic kidney disease: an update. Int J Mol Sci 24:2133. https://doi.org/10.3390/ijms24032133 
  154. Tam LM, Price NE, Wang Y (2020) Molecular mechanisms of arsenic-induced disruption of DNA repair. Chem Res Toxicol 33:709-726. https://doi.org/10.1021/acs.chemrestox.9b00464 
  155. Zeng Q, Yi H, Huang L et al (2019) Long-term arsenite exposure induces testicular toxicity by redox imbalance, G2/M cell arrest and apoptosis in mice. Toxicology 411:122-132. https://doi.org/10.1016/j.tox.2018.09.010 
  156. You S, Zheng J, Chen Y, Huang H (2022) Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front Endocrinol 13:976465. https://doi.org/10.3389/fendo.2022.976465 
  157. Lin J-X, Leonard WJ (2000) The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene 19:2566-2576. https://doi.org/10.1038/sj.onc.1203523 
  158. Mahmud SA, Manlove LS, Farrar MA (2013) Interleukin-2 and STAT5 in regulatory T cell development and function. JAKSTAT 2:e23154. https://doi.org/10.4161/jkst.23154 
  159. Yu A, Snowhite I, Vendrame F et al (2015) Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64:2172-2183. https://doi.org/10.2337/db14-1322 
  160. Han S, Chung DC, St. Paul M, et al (2020) Overproduction of IL-2 by Cbl-b deficient CD4+ T cells provides resistance against regulatory T cells. Oncoimmunology 9:1737368 . https://doi.org/10.1080/2162402X.2020.1737368 
  161. Chen J, Jiang J, Liu Y et al (2021) Arsenite induces dysfunction of regulatory T cells through acetylation control of the Foxp3 promoter. Hum Exp Toxicol 40:35-46. https://doi.org/10.1177/0960327120934533 
  162. Zhang Z, Pi R, Luo J et al (2022) Association between arsenic exposure and inflammatory cytokines and C-reaction protein: a systematic review and meta-analysis. Medicine 101:e32352. https://doi.org/10.1097/MD.0000000000032352 
  163. Martinez VD, Vucic EA, Becker-Santos DD et al (2011) Arsenic exposure and the induction of human cancers. J Toxicol 2011:1-13. https://doi.org/10.1155/2011/431287 
  164. Zhu B, Qu S (2022) The relationship between diabetes mellitus and cancers and its underlying mechanisms. Front Endocrinol 13:800995. https://doi.org/10.3389/fendo.2022.800995 
  165. Giovannucci E, Harlan DM, Archer MC et al (2010) Diabetes and cancer. Diabetes Care 33:1674-1685. https://doi.org/10.2337/dc10-0666 
  166. Pradhan AK, Emdad L, Das SK, et al (2017) The enigma of miRNA regulation in cancer. pp 25-52 
  167. Fu L, Fu H, Wu Q et al (2017) High expression of ETS2 predicts poor prognosis in acute myeloid leukemia and may guide treatment decisions. J Transl Med 15:159. https://doi.org/10.1186/s12967-017-1260-2 
  168. Martinez LA (2016) Mutant p53 and ETS2, a tale of reciprocity. Front Oncol 6:35. https://doi.org/10.3389/fonc.2016.00035 
  169. Lv D-D, Zhou L-Y, Tang H (2021) Hepatocyte nuclear factor 4α and cancer-related cell signaling pathways: a promising insight into cancer treatment. Exp Mol Med 53:8-18. https://doi.org/10.1038/s12276-020-00551-1 
  170. Avraham S, Korin B, Aviram S et al (2019) ATF3 and JDP2 deficiency in cancer associated fibroblasts promotes tumor growth via SDF-1 transcription. Oncogene 38:3812-3823. https://doi.org/10.1038/s41388-019-0692-y 
  171. Tang N, Ma L, Lin X-Y et al (2015) Expression of PHF20 protein contributes to good prognosis of NSCLC and is associated with Bax expression. Int J Clin Exp Pathol 8:12198-12206 
  172. Heublein S, Mayr D, Meindl A et al (2015) Thyroid hormone receptors predict prognosis in BRCA1 associated breast cancer in opposing ways. PLoS One 10:e0127072. https://doi.org/10.1371/journal.pone.0127072 
  173. Sang L, Wang X, Bai W et al (2022) The role of hepatocyte nuclear factor 4α (HNF4α) in tumorigenesis. Front Oncol 12:1011230. https://doi.org/10.3389/fonc.2022.1011230 
  174. Ma HM, Zhang Q, Yang XM et al (2022) HNF4A regulates the proliferation and tumor formation of cervical cancer cells through the Wnt/β-catenin pathway. Oxid Med Cell Longev 2022:1-17. https://doi.org/10.1155/2022/8168988 
  175. Klein-Hessling S, Muhammad K, Klein M et al (2017) NFATc1 controls the cytotoxicity of CD8+ T cells. Nat Commun 8:511. https://doi.org/10.1038/s41467-017-00612-6 
  176. Xu W, Gu J, Ren Q et al (2016) NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway. Tumor Biol 37:4493-4500. https://doi.org/10.1007/s13277-015-4245-x 
  177. Ahangar Davoodi N, Najaf S, Naderi Ghale-Noie Z et al (2022) Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 10:1065837. https://doi.org/10.3389/fcell.2022.1065837 
  178. Majumder S, Bhowal A, Basu S et al (2016) Deregulated E2F5/p38/SMAD3 circuitry reinforces the pro-tumorigenic switch of TGFβ signaling in prostate cancer. J Cell Physiol 231:2482-2492. https://doi.org/10.1002/jcp.25361 
  179. Zheng R, Blobel GA (2010) GATA transcription factors and cancer. Genes Cancer 1:1178-1188. https://doi.org/10.1177/1947601911404223 
  180. Lentjes MH, Niessen HE, Akiyama Y et al (2016) The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 18:e3. https://doi.org/10.1017/erm.2016.2 
  181. Vleugel MM, Greijer AE, Bos R et al (2006) c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol 37:668-674. https://doi.org/10.1016/j.humpath.2006.01.022 
  182. Shao C, Huang Y, Fu B et al (2021) Targeting c-Jun in A549 cancer cells exhibits antiangiogenic activity in vitro and in vivo through exosome/miRNA-494-3p/PTEN signal pathway. Front Oncol 11:663183. https://doi.org/10.3389/fonc.2021.663183 
  183. Sun Y, Perera J, Rubin BP, Huang J (2011) SYT-SSX1 (synovial sarcoma translocated) regulates PIASy ligase activity to cause overexpression of NCOA3 protein. J Biol Chem 286:18623-18632. https://doi.org/10.1074/jbc.M110.176693 
  184. Miao B, Zhang C, Stroh N et al (2021) Transcription factor TFE3 enhances cell cycle and cancer progression by binding to the hTERT promoter. Cancer Commun 41:1423-1426. https://doi.org/10.1002/cac2.12216 
  185. Yasui K, Okamoto H, Arii S, Inazawa J (2003) Association of over-expressed TFDP1 with progression of hepatocellular carcinomas. J Hum Genet 48:609-613. https://doi.org/10.1007/s10038-003-0086-3 
  186. Morimoto Y, Mizushima T, Wu X et al (2020) miR-4711-5p regulates cancer stemness and cell cycle progression via KLF5, MDM2 and TFDP1 in colon cancer cells. Br J Cancer 122:1037-1049. https://doi.org/10.1038/s41416-020-0758-1 
  187. Castillo SD, Angulo B, Suarez-Gauthier A et al (2010) Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer. J Pathol 222:89-98. https://doi.org/10.1002/path.2732 
  188. Drucker E, Holzer K, Pusch S et al (2019) Karyopherin α2-dependent import of E2F1 and TFDP1 maintains protumorigenicstathmin expression in liver cancer. Cell Commun Signal 17:159. https://doi.org/10.1186/s12964-019-0456-x 
  189. Aguayo-Mazzucato C, Zavacki AM, Marinelarena A et al (2013) Thyroid hormone promotes postnatal rat pancreatic β-cell development and glucose-responsive insulin secretion through MAFA. Diabetes 62:1569-1580. https://doi.org/10.2337/db12-0849 
  190. Heit JJ (2007) Calcineurin/NFAT signaling in the β-cell: from diabetes to new therapeutics. BioEssays 29:1011-1021. https://doi.org/10.1002/bies.20644 
  191. Yang L, Zhu Y, Kong D et al (2019) EGF suppresses the expression of miR-124a in pancreatic β cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int J Biol Sci 15:2561-2575. https://doi.org/10.7150/ijbs.34985 
  192. Liu Y, Tian X, Li Y et al (2016) Up-regulation of CREG expression by the transcription factor GATA1 inhibits high glucose-and high palmitate-induced apoptosis in human umbilical vein endothelial cells. PLoS One 11:e0154861. https://doi.org/10.1371/journal.pone.0154861 
  193. Ao H, Liu B, Li H, Lu L (2019) Egr1 mediates retinal vascular dysfunction in diabetes mellitus via promoting p53 transcription. J Cell Mol Med 23:3345-3356. https://doi.org/10.1111/jcmm.14225 
  194. Luo F, Zhuang Y, Sides MD et al (2014) Arsenic trioxide inhibits transforming growth factor-β1-induced fibroblast to myofibroblast differentiation in vitro and bleomycin induced lung fibrosis in vivo. Respir Res 15:51. https://doi.org/10.1186/1465-9921-15-51 
  195. Salazard B, Bellon L, Jean S et al (2004) Low-level arsenite activates the transcription of genes involved in adipose differentiation. Cell Biol Toxicol 20:375-385. https://doi.org/10.1007/s10565-004-1471-1 
  196. Navas-Acien A, Silbergeld EK, Streeter RA et al (2006) Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environ Health Perspect 114:641-648. https://doi.org/10.1289/ehp.8551 
  197. Padmaja Divya S, Pratheeshkumar P, Son Y-O et al (2015) Arsenic induces insulin resistance in mouse adipocytes and myotubes via oxidative stress-regulated mitochondrial sirt3-FOXO3a signaling pathway. Toxicol Sci 146:290-300. https://doi.org/10.1093/toxsci/kfv089 
  198. Shang B, Venkatratnam A, Hartwell H et al (2022) Ex vivo exposures to arsenite and its methylated trivalent metabolites alter gene transcription in mouse sperm cells. Toxicol Appl Pharmacol 455:116266. https://doi.org/10.1016/j.taap.2022.116266 
  199. Todero JE, Koch-Laskowski K, Shi Q et al (2022) Candidate master microRNA regulator of arsenic-induced pancreatic beta cell impairment revealed by multi-omics analysis. Arch Toxicol 96:1685-1699. https://doi.org/10.1007/s00204-022-03263-9 
  200. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. pp 133-164