Acknowledgement
This work was supported by two major projects DBT-BUILDER-Cat III (Grant number: BT/INF/22/SP41403/2021) and Gujarat State Biotechnology Mission (GSBTM) Gandhinagar, India, for financial assistance (Grant number: GSBTM/JD(R&D)/618/21-22/1224, Date: 28/12/2021).
References
- Troczka BJ, Williamson MS, Field LM, Davies TE (2017) Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotoxicology 60:224-233. https://doi.org/10.1016/j.neuro.2016.05.012
- Nauen R, Steinbach D (2016) Resistance to diamide insecticides in lepidopteran pests. Advances in insect control and resistance management. Springer, pp 219-240. https://doi.org/10.1007/978-3-319-31800-4_12
- Li W, Wei-Wei S, Guo-Hua D, Xiao-Li F, Miao-Ling Y, ZhiHua L (2014) Acute and joint toxicity of three agrochemicals to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles. Zool Res 35:272. https://doi.org/10.13918/j.issn.2095-8137.2014.4.272
- Sun Q, Lin J, Peng Y, Gao R, Peng Y (2018) Flubendiamide enhances adipogenesis and inhibits AMPKα in 3T3-L1 adipocytes. Molecules 23:2950. https://doi.org/10.3390/molecules23112950
- Sarkar S, Dutta M, Roy S (2014) Potential toxicity of flubendiamide in Drosophila melanogaster and associated structural alterations of its compound eye. Toxicol Environ Chem 96:1075-1087. https://doi.org/10.1080/02772248.2014.997986
- Sarkar S, Roy A, Roy S (2018) Flubendiamide affects visual and locomotory activities of Drosophila melanogaster for three successive generations (P, F 1 and F 2). Invertebr Neurosci 18:1-11. https://doi.org/10.1007/s10158-018-0210-x
- Sarkar S, Roy S (2017) Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster. Environ Monit Assess 189:1-14. https://doi.org/10.1007/s10661-017-6287-6
- Liu Z, Chen D, Lyu B, Wu Z, Li J, Zhao Y, Wu Y (2022) Occurrence of phenylpyrazole and diamide insecticides in lactating women and their health risks for infants. J Agric Food Chem 70:4467-4474. https://doi.org/10.1021/acs.jafc.2c00824
- Stern CD (2018) The chick model system: a distinguished past and a great future. Int J Dev Biol 62:1-4. https://doi.org/10.1387/ijdb.170270cs
- Wittig JG, Munsterberg A (2016) The early stages of heart development: insights from chicken embryos. J Cardiovasc Dev Dis 3:12. https://doi.org/10.3390/jcdd3020012
- Felmeden DC, Blann AD, Lip GYH (2003) Angiogenesis: basic pathophysiology and implications for disease. Eur Heart J 24:586-603. https://doi.org/10.1016/S0195-668X(02)00635-8
- Ahmed TA, Cordeiro CM, Elebute O, Hincke MT (2022) Proteomic analysis of chicken chorioallantoic membrane (CAM) during embryonic development provides functional insight. BioMed Res Int 2022:7813921. https://doi.org/10.1155/2022/7813921
- Schmitd LB, Liu M, Scanlon CS, Banerjee R, D'Silva NJ (2019) The chick chorioallantoic membrane in vivo model to assess perineural invasion in head and neck cancer. JoVE (J Vis Exp) 148:e59296. https://doi.org/10.3791/59296
- Hiratsuka S, Kataoka Y, Nakao K, Nakamura K, Morikawa S, Tanaka S, Shibuya M (2005) Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos. Mol Cell Biol 25:355-363. https://doi.org/10.1128/MCB.25.1.355-363.2005
- Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, Laakkonen JP (2021) BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis 24:129-144. https://doi.org/10.1007/s10456-020-09748-4
- Guo D, Murdoch CE, Liu T, Qu J, Jiao S, Wang Y, Chen X (2018) Therapeutic angiogenesis of Chinese herbal medicines in ischemic heart disease: a review. Front Pharmacol 9:428. https://doi.org/10.3389/fphar.2018.00428
- Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51. https://doi.org/10.3389/fnmol.2011.00051
- Blankenship AL, Hilscherova K, Nie M, Coady KK, Villalobos SA, Kannan K, Giesy JP (2003) Mechanisms of TCDD-induced abnormalities and embryo lethality in white leghorn chickens. Comp Biochem Physiol Part C Toxicol Pharmacol 136:47-62. https://doi.org/10.1016/S1532-0456(03)00166-2
- Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. PLoS One 6:e27385. https://doi.org/10.1371/journal.pone.0027385
- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16:2785-2791. https://doi.org/10.1002/jcc.21256
- Biovia DS (2017) Discovery studio visualizer, vol 936. San Diego, CA
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- World Health Organization (2016) Manual on development and use of FAO and WHO specifications for pesticides. Food & Agriculture Org
- Kalliora C, Mamoulakis C, Vasilopoulos E, Stamatiades GA, Kalafati L, Barouni R, Tsatsakis A (2018) Association of pesticide exposure with human congenital abnormalities. Toxicol Appl Pharmacol 346:58-75. https://doi.org/10.1016/j.taap.2018.03.025
- Xiao-Ming X, Wen D, Peng L, Shu-Jin W, Min H, Li-Ying L (2010) Subchronic toxicity organophosphate insecticide-induced damages on endothelial function of vessels in rabbits by inhibiting antioxidases. Progress Biochem Biophys 37:1232-1239. https://doi.org/10.1016/j.fct.2007.06.038
- Priyadarshini CS, Balaji T, Kumar JA, Subramanian M, Sundaramurthi I, Meera M (2020) Chlorpyrifos and its metabolite modulates angiogenesis in the chorioallantoic membrane of chick embryo. J Basic Clin Physiol Pharmacol 31:20190041. https://doi.org/10.1515/jbcpp-2019-0041
- Strzalka W, Ziemienowicz A (2011) Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot 107:1127-1140. https://doi.org/10.1093/aob/mcq243
- Zavala G, Prieto CP, Villanueva AA, Palma V (2017) Sonic hedgehog (SHH) signaling improves the angiogenic potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther 8:1-17. https://doi.org/10.1186/s13287-017-0653-8
- Salybekov AA, Salybekova AK, Pola R, Asahara T (2018) Sonic hedgehog signaling pathway in endothelial progenitor cell biology for vascular medicine. Int J Mol Sci 19:3040. https://doi.org/10.3390/ijms19103040
- Lei X, Zhong Y, Huang L, Li S, Fu J, Zhang L, Yu X (2020) Identification of a novel tumor angiogenesis inhibitor targeting Shh/Gli1 signaling pathway in Non-small cell lung cancer. Cell Death Dis 11:232. https://doi.org/10.1038/s41419-020-2425-0
- Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, Maquet E, Stainier DY (2015) Tip cell-specific requirement for an atypical Gpr124-and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. Elife 4:e06489. https://doi.org/10.7554/eLife.06489
- Olsen JJ, Pohl SOG, Deshmukh A, Visweswaran M, Ward NC, Arfuso F, Dharmarajan A (2017) The role of Wnt signalling in angiogenesis. Clin Biochem Rev 38:131
- Benn A, Hiepen C, Osterland M, Schutte C, Zwijsen A, Knaus P (2017) Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs tip cell competence. FASEB J 31:4720. https://doi.org/10.1096/f.201700193RR
- Howe GA, Addison CL (2012) RhoB controls endothelial cell morphogenesis in part via negative regulation of RhoA. Vascular cell 4:1-11. https://doi.org/10.1186/2045-824X-4-1
- Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:1-9. https://doi.org/10.1186/1471-2121-14-32