DOI QR코드

DOI QR Code

Upregulation of YPEL3 expression and induction of human breast cancer cell death by microRNAs

  • Boyoung Lee (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Yeo-Jung Kwon (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Sangyun Shin (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Tae-Uk Kwon (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Hyemin Park (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Hyein Lee (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Ji-Heung Kwak (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Young-Jin Chun (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University)
  • Received : 2024.03.10
  • Accepted : 2024.06.12
  • Published : 2024.10.15

Abstract

MicroRNAs (miRNAs), molecules comprising 18-22 nucleotides, regulate expression of genes post-transcriptionally at the 3' untranslated region of target mRNAs. However, the biological roles and mechanisms of action of miRNAs in breast cancer remain unelucidated. Thus, in this study, we aimed to investigate the functions and possible mechanisms of action of miRNAs in breast cancer to suppress carcinogenesis. Using miRNA databases, we selected miR-34a and miR-605-5p to downregulate MDM4 and MDM2, respectively, because these ubiquitin E3 ligases degrade p53 and promote carcinogenesis. Results showed that miR-34a and miR-605-5p suppressed MDM4 and MDM2 expression, respectively. Moreover, they reduced the expression of yes-associated protein 1 (YAP1), a well-known oncogene involved in Hippo signaling, but upregulated the mRNA and protein expression of yippee-like 3 (YPEL3). To elucidate whether these miRNAs promote cellular senescence and death through YPEL3 upregulation, we examined their effects on cellular proliferation, SA-β-gal activity, and mitochondrial activity in human breast cancer MCF-7 cells. Given their upregulating effect on YPEL3 expression, miR-34a and miR-605-5p increased the number of β-galactosidase-positive cells and depolarized live cells (by 10%-12%). These data suggest that miR-34a and miR-605-5p promote cellular senescence and cell death. Thus, they may act as tumor suppressors by inducing Hippo signaling and may serve as novel therapeutic agents in breast cancer treatment.

Keywords

Acknowledgement

This research was supported by the Chung-Ang University Research Grants in 2022 and National Research Foundation of Korea (NRF), funded by the Ministry of Science, Information & Communication Technology (ICT) and Future Planning (MSIP) of the Korean government (NRF2022R1A5A6000760). The funding agency had no role in the study design, data collection or analysis, decision to publish, or manuscript preparation.

References

  1. Shadfan M, Lopez-Pajares V, Yuan ZM (2012) MDM2 and MDMX: Alone and together in regulation of p53. Transl Cancer Res 1:88-89. https://doi.org/10.3978/j.issn.2218-676X.2012.04.02 
  2. Marei HE, Althani A, Aff N et al (2021) p53 signaling in cancer progression and therapy. Cancer Cell Int 21:703. https://doi.org/10.1186/s12935-021-02396-8 
  3. Marine JC, Jochemsen AG (2005) Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 331:750-760. https://doi.org/10.1016/j.bbrc.2005.03.151 
  4. Wynendaele J, Bohnke A, Leucci E et al (2010) An illegitimate microRNA target site within the 3' UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res 70:9641-9649. https://doi.org/10.1158/0008-5472.CAN-10-0527 
  5. Wang X, Jiang X (2012) Mdm2 and Mdmx partner to regulate p53. FEBS Lett 586:1390-1396. https://doi.org/10.1016/j.febslet.2012.02.049 
  6. Woodfeld SE, Shi Y, Patel RH et al (2021) MDM4 inhibition: a novel therapeutic strategy to reactivate p53 in hepatoblastoma. Sci Rep 11:2967. https://doi.org/10.1038/s41598-021-82542-4 
  7. Leslie PL, Ke H, Zhang Y (2015) The MDM2 ring domain and central acidic domain play distinct roles in mdm2 protein homodimerization and mdm2-mdmx protein heterodimerization. J Biol Chem 290:12941-12950. https://doi.org/10.1074/jbc.M115.644435 
  8. Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M (2003) HdmX stimulates hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A 100:12009-12014. https://doi.org/10.1073/pnas.2030930100 
  9. Marine JC (2011) MDM2 and MDMX in cancer and development. Curr Top Dev Biol 94:45-75. https://doi.org/10.1016/B978-0-12-380916-2.00003-6 
  10. Markey MP (2011) Regulation of MDM4. Front Biosci 16:1144-1156. https://doi.org/10.2741/3780 
  11. Shukla GC, Singh J, Barik S (2011) MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3:83-92 
  12. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215-233. https://doi.org/10.1016/j.cell.2009.01.002 
  13. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189-198. https://doi.org/10.1016/j.ccr.2006.01.025 
  14. Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyl transferases 3A and 3B. Proc Natl Acad Sci US A 104:15805-15810. https://doi.org/10.1073/pnas.0707628104 
  15. Swarbrick A, Woods SL, Shaw A et al (2010) MiR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16:1134-1140. https://doi.org/10.1038/nm.2227 
  16. Hill M, Tran N (2021) MiRNA interplay: mechanisms and consequences in cancer. Dis Model Mech 14:047662. https://doi.org/10.1242/dmm.047662 
  17. Wyld L, Bellantuono I, Tchkonia T et al (2020) Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers 12:2134. https://doi.org/10.3390/cancers12082134 
  18. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424-1435. https://doi.org/10.1038/nm.4000 
  19. Suh N (2018) MicroRNA controls of cellular senescence. BMB Rep 51:493-499. https://doi.org/10.5483/BMBRep.2018.51.10.209 
  20. Van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147-2153. https://doi.org/10.1093/jxb/erh264 
  21. Cannell IG, Kong YW, Bushell M (2008) How do microRNAs regulate gene expression? Biochem Soc Trans 36:1224-1231. https://doi.org/10.1042/BST0361224 
  22. Kelley KD, Miller KR, Todd A et al (2010) YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res 70:3566-3575. https://doi.org/10.1158/0008-5472.CAN-09-3219 
  23. Freund A, Laberge RM, Demaria M, Campisi J (2012) Lamin b1 loss is a senescence-associated biomarker. Mol Biol Cell 23:2066-2075. https://doi.org/10.1091/mbc.E11-10-0884 
  24. Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O (2017) Loss of lamin b1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep 7:15678. https://doi.org/10.1038/s41598-017-15901-9 
  25. Saito N, Araya J, Ito S et al (2019) Involvement of lamin B1 reduction in accelerated cellular senescence during chronic obstructive pulmonary disease pathogenesis. J Immunol 202:1428-1440. https://doi.org/10.4049/jimmunol.1801293 
  26. Kwon Y, Lee H, Park H et al (2023) YPEL3 expression induces cellular senescence via the Hippo signaling pathway in human breast cancer cells. Toxicol Res 39:711-719. https://doi.org/10.1007/s43188-023-00208-x 
  27. Stein C, Bardet AF, Roma G et al (2015) YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet 11:e1005465. https://doi.org/10.1371/journal.pgen.1005465 
  28. Khasraw M, Bell R, Dang C (2012) Epirubicin: is it like doxorubicin in breast cancer? A clinical review. Breast 21:142-149. https://doi.org/10.1016/j.breast.2011.12.012 
  29. Lin RW, Ho CJ, Chen HW et al (2018) P53 enhances apoptosis induced by doxorubicin only under conditions of severe DNA damage. Cell Cycle 17:2175-2186. https://doi.org/10.1080/15384101.2018.1520565 
  30. Miwa S, Kashyap S, Chini E, von Zglinicki T (2022) Mitochondrial dysfunction in cell senescence and aging. J Clin Invest 132:e158447. https://doi.org/10.1172/JCI158447 
  31. Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593:1566-1579. https://doi.org/10.1002/1873-3468.13498 
  32. Zorova LD, Popkov VA, Plotnikov EY et al (2018) Mitochondrial membrane potential. Anal Biochem 552:50-59. https://doi.org/10.1016/j.ab.2017.07.009 
  33. Li Y, Nichols MA, Shay JW, Xiong Y (1994) Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54:6078-6082 
  34. Liu JY, Souroullas GP, Diekman BO et al (2019) Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc Natl Acad Sci USA 116:2603-2611. https://doi.org/10.1073/pnas.1818313116 
  35. Kalfert D, Ludvikova M, Pesta M et al (2020) Multifunctional roles of miR-34a in cancer: A review with the emphasis on head and neck squamous cell carcinoma and thyroid cancer with clinical implications. Diagnostics 10:563. https://doi.org/10.3390/diagnostics10080563 
  36. Wang C, Jurk D, Maddick M et al (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311-323. https://doi.org/10.1111/j.1474-9726.2009.00481.x 
  37. Saito Y, Nakaoka T, Saito H (2015) MicroRNA-34a as a therapeutic agent against human cancer. J Clin Med 4:1951-1959. https://doi.org/10.3390/jcm4111951 
  38. Chen P, Zhou C, Li B, Yang C (2020) Circular RNA MGAT1 regulates cell proliferation and apoptosis in hypoxia-induced cardiomyocytes through miR-34a/YAP1 axis. Int J Exp Pathol 13:2474-2486 
  39. Sebio A, Lenz HJ (2015) Molecular pathways: hippo signaling, a critical tumor suppressor. Clin Cancer Res 21:5002-5007. https://doi.org/10.1158/1078-0432.CCR-15-0411 
  40. Chen X, Li Y, Luo J, Hou N (2020) Molecular mechanism of Hippo-YAP1/TAZ pathway in heart development, disease, and regeneration. Front Physiol 11:389. https://doi.org/10.3389/fphys.2020.00389 
  41. Guo L, Chen Y, Luo J, Zheng J, Shao G (2019) YAP1 overexpression is associated with poor prognosis of breast cancer patients and induces breast cancer cell growth by inhibiting PTEN. FEBS Open Bio 9:437-445. https://doi.org/10.1002/2211-5463.12597 
  42. Hong JH, Hwang ES, McManus MT et al (2005) TAZ, a transcriptional modulator of mesenchymal stem cell difierentiation. Science 30:1074-1078. https://doi.org/10.1126/science.1110955