Acknowledgement
This research was supported by the Chung-Ang University Research Grants in 2022 and National Research Foundation of Korea (NRF), funded by the Ministry of Science, Information & Communication Technology (ICT) and Future Planning (MSIP) of the Korean government (NRF2022R1A5A6000760). The funding agency had no role in the study design, data collection or analysis, decision to publish, or manuscript preparation.
References
- Shadfan M, Lopez-Pajares V, Yuan ZM (2012) MDM2 and MDMX: Alone and together in regulation of p53. Transl Cancer Res 1:88-89. https://doi.org/10.3978/j.issn.2218-676X.2012.04.02
- Marei HE, Althani A, Aff N et al (2021) p53 signaling in cancer progression and therapy. Cancer Cell Int 21:703. https://doi.org/10.1186/s12935-021-02396-8
- Marine JC, Jochemsen AG (2005) Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 331:750-760. https://doi.org/10.1016/j.bbrc.2005.03.151
- Wynendaele J, Bohnke A, Leucci E et al (2010) An illegitimate microRNA target site within the 3' UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res 70:9641-9649. https://doi.org/10.1158/0008-5472.CAN-10-0527
- Wang X, Jiang X (2012) Mdm2 and Mdmx partner to regulate p53. FEBS Lett 586:1390-1396. https://doi.org/10.1016/j.febslet.2012.02.049
- Woodfeld SE, Shi Y, Patel RH et al (2021) MDM4 inhibition: a novel therapeutic strategy to reactivate p53 in hepatoblastoma. Sci Rep 11:2967. https://doi.org/10.1038/s41598-021-82542-4
- Leslie PL, Ke H, Zhang Y (2015) The MDM2 ring domain and central acidic domain play distinct roles in mdm2 protein homodimerization and mdm2-mdmx protein heterodimerization. J Biol Chem 290:12941-12950. https://doi.org/10.1074/jbc.M115.644435
- Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M (2003) HdmX stimulates hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A 100:12009-12014. https://doi.org/10.1073/pnas.2030930100
- Marine JC (2011) MDM2 and MDMX in cancer and development. Curr Top Dev Biol 94:45-75. https://doi.org/10.1016/B978-0-12-380916-2.00003-6
- Markey MP (2011) Regulation of MDM4. Front Biosci 16:1144-1156. https://doi.org/10.2741/3780
- Shukla GC, Singh J, Barik S (2011) MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3:83-92
- Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215-233. https://doi.org/10.1016/j.cell.2009.01.002
- Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189-198. https://doi.org/10.1016/j.ccr.2006.01.025
- Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyl transferases 3A and 3B. Proc Natl Acad Sci US A 104:15805-15810. https://doi.org/10.1073/pnas.0707628104
- Swarbrick A, Woods SL, Shaw A et al (2010) MiR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16:1134-1140. https://doi.org/10.1038/nm.2227
- Hill M, Tran N (2021) MiRNA interplay: mechanisms and consequences in cancer. Dis Model Mech 14:047662. https://doi.org/10.1242/dmm.047662
- Wyld L, Bellantuono I, Tchkonia T et al (2020) Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers 12:2134. https://doi.org/10.3390/cancers12082134
- Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424-1435. https://doi.org/10.1038/nm.4000
- Suh N (2018) MicroRNA controls of cellular senescence. BMB Rep 51:493-499. https://doi.org/10.5483/BMBRep.2018.51.10.209
- Van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147-2153. https://doi.org/10.1093/jxb/erh264
- Cannell IG, Kong YW, Bushell M (2008) How do microRNAs regulate gene expression? Biochem Soc Trans 36:1224-1231. https://doi.org/10.1042/BST0361224
- Kelley KD, Miller KR, Todd A et al (2010) YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res 70:3566-3575. https://doi.org/10.1158/0008-5472.CAN-09-3219
- Freund A, Laberge RM, Demaria M, Campisi J (2012) Lamin b1 loss is a senescence-associated biomarker. Mol Biol Cell 23:2066-2075. https://doi.org/10.1091/mbc.E11-10-0884
- Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O (2017) Loss of lamin b1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep 7:15678. https://doi.org/10.1038/s41598-017-15901-9
- Saito N, Araya J, Ito S et al (2019) Involvement of lamin B1 reduction in accelerated cellular senescence during chronic obstructive pulmonary disease pathogenesis. J Immunol 202:1428-1440. https://doi.org/10.4049/jimmunol.1801293
- Kwon Y, Lee H, Park H et al (2023) YPEL3 expression induces cellular senescence via the Hippo signaling pathway in human breast cancer cells. Toxicol Res 39:711-719. https://doi.org/10.1007/s43188-023-00208-x
- Stein C, Bardet AF, Roma G et al (2015) YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet 11:e1005465. https://doi.org/10.1371/journal.pgen.1005465
- Khasraw M, Bell R, Dang C (2012) Epirubicin: is it like doxorubicin in breast cancer? A clinical review. Breast 21:142-149. https://doi.org/10.1016/j.breast.2011.12.012
- Lin RW, Ho CJ, Chen HW et al (2018) P53 enhances apoptosis induced by doxorubicin only under conditions of severe DNA damage. Cell Cycle 17:2175-2186. https://doi.org/10.1080/15384101.2018.1520565
- Miwa S, Kashyap S, Chini E, von Zglinicki T (2022) Mitochondrial dysfunction in cell senescence and aging. J Clin Invest 132:e158447. https://doi.org/10.1172/JCI158447
- Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593:1566-1579. https://doi.org/10.1002/1873-3468.13498
- Zorova LD, Popkov VA, Plotnikov EY et al (2018) Mitochondrial membrane potential. Anal Biochem 552:50-59. https://doi.org/10.1016/j.ab.2017.07.009
- Li Y, Nichols MA, Shay JW, Xiong Y (1994) Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54:6078-6082
- Liu JY, Souroullas GP, Diekman BO et al (2019) Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc Natl Acad Sci USA 116:2603-2611. https://doi.org/10.1073/pnas.1818313116
- Kalfert D, Ludvikova M, Pesta M et al (2020) Multifunctional roles of miR-34a in cancer: A review with the emphasis on head and neck squamous cell carcinoma and thyroid cancer with clinical implications. Diagnostics 10:563. https://doi.org/10.3390/diagnostics10080563
- Wang C, Jurk D, Maddick M et al (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311-323. https://doi.org/10.1111/j.1474-9726.2009.00481.x
- Saito Y, Nakaoka T, Saito H (2015) MicroRNA-34a as a therapeutic agent against human cancer. J Clin Med 4:1951-1959. https://doi.org/10.3390/jcm4111951
- Chen P, Zhou C, Li B, Yang C (2020) Circular RNA MGAT1 regulates cell proliferation and apoptosis in hypoxia-induced cardiomyocytes through miR-34a/YAP1 axis. Int J Exp Pathol 13:2474-2486
- Sebio A, Lenz HJ (2015) Molecular pathways: hippo signaling, a critical tumor suppressor. Clin Cancer Res 21:5002-5007. https://doi.org/10.1158/1078-0432.CCR-15-0411
- Chen X, Li Y, Luo J, Hou N (2020) Molecular mechanism of Hippo-YAP1/TAZ pathway in heart development, disease, and regeneration. Front Physiol 11:389. https://doi.org/10.3389/fphys.2020.00389
- Guo L, Chen Y, Luo J, Zheng J, Shao G (2019) YAP1 overexpression is associated with poor prognosis of breast cancer patients and induces breast cancer cell growth by inhibiting PTEN. FEBS Open Bio 9:437-445. https://doi.org/10.1002/2211-5463.12597
- Hong JH, Hwang ES, McManus MT et al (2005) TAZ, a transcriptional modulator of mesenchymal stem cell difierentiation. Science 30:1074-1078. https://doi.org/10.1126/science.1110955