Acknowledgement
This work was supported by the Basic Research Lab Program (2022R1A4A1025557) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT. In addition, this study was also supported by the "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE; 2021RIS-001) in 2024.
References
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBO-CAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209-249. https://doi.org/10.3322/caac.21660
- Maqbool M, Bekele F, Fekadu G (2023) Treatment strategies against triple-negative breast cancer: an updated review. Breast Cancer Targets Ther 14:15-24. https://doi.org/10.2147/BCTT.S348060
- Chang-Qing Y, Jie L, Shi-Qi Z, Kun Z, Zi-Qian G, Ran X, Hui-Meng L, Ren-Bin Z, Gang Z, Da-Chuan Y, Chen-Yan Z (2020) Recent treatment progress of triple negative breast cancer. Progress Biophys Mol Biol 151:40-53. https://doi.org/10.1016/j.pbiomolbio.2019.11.007
- Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770-803. https://doi.org/10.1021/acs.jnatprod.9b01285
- Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M (2016) A review study on Punica granatum L. J Evid Based Complement Altern Med 21:221-227. https://doi.org/10.1177/2156587215598039
- Berkoz M, Allahverdiyev O (2017) Punicalagin isolated from Punica granatum husk can decrease the inflammatory response in RAW 264.7 macrophages. East J Med 22:57-64. https://doi.org/10.5505/ejm.2017.08760
- Zhang Y, Tan X, Cao Y, An X, Chen J, Yang L (2022) Punicalagin protects against diabetic liver injury by upregulating mitophagy and antioxidant enzyme activities. Nutrients 14:2782. https://doi.org/10.3390/nu14142782
- Cao Y, Chen J, Ren G, Zhang Y, Tan X, Yang L (2019) Punicalagin prevents inflammation in LPS-induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway. Nutrients 11:2794. https://doi.org/10.3390/nu11112794
- Berkoz M, Krosniak M (2020) Punicalagin induces apoptosis in A549 cell line through mitochondria-mediated pathway. Gen Physiol Biophys 39:557-567. https://doi.org/10.4149/gpb_2020024
- Liu C-H, Kuo Y-T, Lin C-J, Lin L-T (2023) Involvement of cell surface glycosaminoglycans in chebulagic acid's and punicalagin's antiviral activities against Coxsackievirus A16 infection. Phytomedicine 120:155047. https://doi.org/10.1016/j.phymed.2023.155047
- Cheng X, Gao Y, Yao X, Yu H, Bao J, Guan H, Sun Y, Zhang L (2016) Punicalagin induces apoptosis-independent autophagic cell death in human papillary thyroid carcinoma BCPAP cells. RSC Adv 6:68485-68493. https://doi.org/10.1039/C6RA13431A
- Ganesan T, Sinniah A, Chik Z, Alshawsh MA (2020) Punicalagin regulates apoptosis-autophagy switch via modulation of annexin A1 in colorectal cancer. Nutrients 12:2430. https://doi.org/10.3390/nu12082430
- Zhang L, Chinnathambi A, Alharbi SA, Veeraraghavan VP, Mohan SK, Zhang G (2020) Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi J Biol Sci 27:1100-1106. https://doi.org/10.1016/j.sjbs.2020.02.015
- Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158-167. https://doi.org/10.1016/j.molcel.2012.09.025
- Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37:266. https://doi.org/10.1186/s13046-018-0909-x
- Okon IS, Zou MH (2015) Mitochondrial ROS and cancer drug resistance: implications for therapy. Pharmacol Res 100:170-174. https://doi.org/10.1016/j.phrs.2015.06.013
- Shah MA, Rogof HA (2021) Implications of reactive oxygen species on cancer formation and its treatment. Semin Oncol 48:238-245. https://doi.org/10.1053/j.seminoncol.2021.05.002
- Cao W, Li J, Yang K, Cao D (2021) An overview of autophagy: mechanism, regulation and research progress. Bull du Cancer 108:304-322. https://doi.org/10.1016/j.bulcan.2020.11.004
- Mulcahy Levy JM, Thorburn A (2020) Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 27:843-857. https://doi.org/10.1038/s41418-019-0474-7
- Booth L, Roberts JL, Poklepovic A, Dent P (2024) Autophagy as a therapeutic mechanism to kill drug-resistant cancer cells. Anticancer Drugs 35:177-182. https://doi.org/10.1097/cad.0000000000001549
- Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharif-Rad J, Hano C, Calina D, Cho WC (2022) Recent updates on anticancer mechanisms of polyphenols. Front Cell Develop Biol 10:1005910. https://doi.org/10.3389/fcell.2022.1005910
- Gupta N, Singh S, Chauhan D, Srivastava R, Singh VK (2023) Exploring the anticancer potentials of polyphenols: a comprehensive review of patents in the last five years. Recent Pat Anti-Cancer Drug Discov 18:3-10. https://doi.org/10.2174/1574892817666220512220036
- Kilit AC, Aydemir E (2023) Anticancer effects of punicalagin. Haydarpasa Numune Med J 63:99-104. https://doi.org/10.14744/hnhj.2021.77044
- Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L (2019) Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis 10:609. https://doi.org/10.1038/s41419-019-1849-x
- Kumar K, Sabarwal A, Singh RP (2019) Mancozeb selectively induces mitochondrial-mediated apoptosis in human gastric carcinoma cells through ROS generation. Mitochondrion 48:1-10. https://doi.org/10.1016/j.mito.2018.06.003
- Chen Y-F, Liu H, Luo X-J, Zhao Z, Zou Z-Y, Li J, Lin X-J, Liang Y (2017) The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol/Hematol 112:21-30. https://doi.org/10.1016/j.critrevonc.2017.02.004
- Liu X-J, Wang Y-Q, Shang S-Q, Xu S, Guo M (2022) TMT induces apoptosis and necroptosis in mouse kidneys through oxidative stress-induced activation of the NLRP3 inflammasome. Ecotoxicol Environ Saf 230:113167. https://doi.org/10.1016/j.ecoenv.2022.113167
- Nakamura H, Takada K (2021) Reactive oxygen species in cancer: current findings and future directions. Cancer Sci 112:3945-3952. https://doi.org/10.1111/cas.15068
- Wei B, Huang Q, Huang S, Mai W, Zhong X (2016) Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on reactive oxygen species (ROS) and NF-κB/p53 pathway. J Pharmacol Sci 131:77-83. https://doi.org/10.1016/j.jphs.2016.03.001
- Yi L-T, Dong S-Q, Wang S-S, Chen M, Li C-F, Geng D, Zhu J-X, Liu Q, Cheng J (2020) Curcumin attenuates cognitive impairment by enhancing autophagy in chemotherapy. Neurobiol Dis 136:104715. https://doi.org/10.1016/j.nbd.2019.104715
- Fang L, Wang H, Zhang J, Fang X (2021) Punicalagin induces ROS-mediated apoptotic cell death through inhibiting STAT3 translocation in lung cancer A549 cells. J Biochem Mol Toxicol 35:1-10. https://doi.org/10.1002/jbt.22771
- Xie X, Hu L, Liu L, Wang J, Liu Y, Ma L, Sun G, Li C, Aisa HA, Meng S (2022) Punicalagin promotes autophagic degradation of human papillomavirus E6 and E7 proteins in cervical cancer through the ROS-JNK-BCL2 pathway. Transl Oncol 19:101388. https://doi.org/10.1016/j.tranon.2022.101388
- Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112-119. https://doi.org/10.1038/nchembio711
- Yan J, Wan P, Choksi S, Liu Z-G (2022) Necroptosis and tumor progression. Trends in Cancer 8:21-27. https://doi.org/10.1016/j.trecan.2021.09.003
- Zang X, Song J, Li Y, Han Y (2022) Targeting necroptosis as an alternative strategy in tumor treatment: from drugs to nanoparticles. J Control Release 349:213-226. https://doi.org/10.1016/j.jconrel.2022.06.060
- Yun CW, Jeon J, Go G, Lee JH, Lee SH (2020) The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int J Mol Sci 22:179. https://doi.org/10.3390/ijms22010179
- Fitzwalter BE, Thorburn A (2015) Recent insights into cell death and autophagy. FEBS J 282:4279-4288. https://doi.org/10.1111/febs.13515
- Subkorn P, Norkaew C, Deesrisak K, Tanyong D (2021) Punicalagin, a pomegranate compound, induces apoptosis and autophagy in acute leukemia. PeerJ 9:e12303. https://doi.org/10.7717/peerj.12303
- Hollenstein DM, Kraft C (2020) Autophagosomes are formed at a distinct cellular structure. Curr Opin Cell Biol 65:50-57. https://doi.org/10.1016/j.ceb.2020.02.012
- Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313-326. https://doi.org/10.1016/j.cell.2010.01.028
- Park NY, Jo DS, Cho D-H (2022) Post-translational modifications of ATG4B in the regulation of autophagy. Cells 11:1330. https://doi.org/10.3390/cells11081330
- Seront E, Boidot R, Bouzin C, Karroum O, Jordan BF, Gallez B, Machiels JP, Feron O (2013) Tumour hypoxia determines the potential of combining mTOR and autophagy inhibitors to treat mammary tumours. Br J Cancer 109:2597-2606. https://doi.org/10.1038/bjc.2013.644
- Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19:4651-4659. https://doi.org/10.1091/mbc.e08-03-0312
- Zhou Y, Wang Z, Huang Y, Bai C, Zhang X, Fang M, Ju Z, Liu B (2021) Membrane dynamics of ATG4B and LC3 in autophagosome formation. J Mol Cell Biol 13:853-863. https://doi.org/10.1093/jmcb/mjab059
- Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749-1760. https://doi.org/10.1038/sj.emboj.7601623
- Bubici C, Papa S (2014) JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol 171:24-37. https://doi.org/10.1111/bph.12432
- Reczek CR, Chandel NS (2017) The two faces of reactive oxygen species in cancer. Ann Rev Cancer Biol 1:79-98. https://doi.org/10.1146/annurev-cancerbio-041916-065808
- Zheng Q, Li Q, Zhao G, Zhang J, Yuan H, Gong D, Guo Y, Liu X, Li K, Lin P (2020) Alkannin induces cytotoxic autophagy and apoptosis by promoting ROS-mediated mitochondrial dysfunction and activation of JNK pathway. Biochem Pharmacol 180:114167. https://doi.org/10.1016/j.bcp.2020.114167
- Liu G-y, Jiang X-x, Zhu X, He W-y, Kuang Y-l, Ren K, Lin Y, Gou X (2015) ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacol Sin 36:1473-1479. https://doi.org/10.1038/aps.2015.101
- Han S-H, Lee J-H, Woo J-S, Jung G-H, Jung S-H, Han E-J, Park Y-S, Kim B-S, Kim S-K, Park B-K, Choi C, Jung J-Y (2022) Myricetin induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in SK-BR-3 cells. Int J Mol Med 49:54. https://doi.org/10.3892/ijmm.2022.5110
- Kalai Selvi S, Vinoth A, Varadharajan T, Weng CF, Vijaya Padma V (2017) Neferine augments therapeutic efficacy of cisplatin through ROS-mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells). Food Chem Toxicol 103:28-40. https://doi.org/10.1016/j.fct.2017.02.020
- Liu F, Gao S, Yang Y, Zhao X, Fan Y, Ma W, Yang D, Yang A, Yu Y (2018) Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep 39:1523-1531. https://doi.org/10.3892/or.2018.6188