DOI QR코드

DOI QR Code

논 메탄 배출 관측을 위한 폐쇄형 챔버의 합리적인 가스 포집 시간대 분석

Analysis of Reasonable Sampling Times for Measuring Methane Emissions using the Closed Chamber Method in Rice Paddy Field

  • 김현기 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이윤호 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김헌중 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 박현진 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이희우 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 윤종탁 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 장재기 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 박혜란 (농촌진흥청 국립농업과학원 기후변화평가과)
  • HyunKi Kim (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Yun-Ho Lee (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Heon-Joong Kim (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Hyun-Jin Park (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Hee-woo Lee (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jong-Tak Yoon (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jaeki Chang (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Hye-Ran Park (Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2024.09.13
  • 심사 : 2024.09.30
  • 발행 : 2024.09.30

초록

농업생태계, 특히 논에서의 메탄 배출량 추정을 위해 가스크로마토그래피를 이용한 폐쇄형 챔버법은 주로 사용되고 있는 방법이다. 본 연구에서는 폐쇄형 챔버법을 효과적으로 사용하기 위한 합리적인 메탄 포집시간을 찾는데 기여하고자 하루 동안 2시간 간격으로 관측을 수행하고 그 모든 자료를 공개하였다. 6월부터 9월까지의 벼 재배 기간 동안 총 4회에 걸쳐 메탄 배출의 일 변화를 관측한 결과, 오전(8:00~12:00)과 늦은 오후(16:00~20:00)의 메탄 배출량이 하루 동안 관측한 값의 평균으로 나타났다. 향후 불연속적인 관측의 한계를 가지는 가스크로마토그래피를 이용한 폐쇄형 챔버법의 단점을 보완하고자 연속 관측이 가능한 에디공분산 미기상법과 같이 비교하여 신뢰도 높은 관측값을 얻는 연구가 필요할 것으로 사료된다.

Measuring and estimating methane (CH4) emissions accurately is important in rice paddy field. For reliable estimation, diurnal and seasonal variations of methane must be tracked, and measured frequently. The closed chamber method proposed according to the IPCC guidelines is relatively cheap and easy to move, so it is widely used, but it is difficult to estimate accurate methane emissions due to spatiotemporal constraints such as sampling time and number of measuring times. In this paper, the diurnal variation pattern was analyzed by measuring methane emissions four times at two-hour intervals throughout the day during the rice growth stage. When the emissions for each time period were converted to a daily time-weighted average, the diurnal average methane flux appeared in the time periods of 8:00~12:00 and 16:00~20:00. Through our results, we hope to provide useful information about determining reasonable times of methane measurement to researchers who measure methane emissions in rice paddy fields using the closed chamber method in the future.

키워드

과제정보

본 성과물(논문)은 농촌진흥청 연구사업(과제번호: RS-2024-00398957)의 지원에 이루어진 것임. 본 연구는 2024년도 농촌진흥청 (국립식량과학원) 전문연구원 과정 지원사업에 의해 이루어진 것임.

참고문헌

  1. Adhya, T. K., A. K. Rath, P. K. Gupta, V. R. Rao, S. N. Das, K. M. Parida, D. C. Parashar, and N. Sethunathan, 1994: Methane emission from flooded rice fields under irrigated conditions. Biology and Fertility of Soils 18, 245-248.
  2. Aubinet, M., 2008: Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem. Ecological applications 18(6), 1368-1378.
  3. Byrnes, B. H., E. R. Austin, and B. K. Tays, 1995: Methane emissions from flooded rice soils and plants under controlled conditions. Soil Biology and Biochemistry 27(3), 331-339.
  4. Centeno, C. A. R., M. C. R. Alberto, R. Wassmann, and B. O. Sander, 2017: Assessing diel variation of CH4 flux from rice paddies through temperature patterns. Atmospheric environment 167, 23-39.
  5. Chaichana, N., S. D. Bellingrath-Kimura, S. Komiya, Y. Fujii, K. Noborio, O. Dietrich, and T. Pakoktom, 2018: Comparison of closed chamber and eddy covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere 9(9), 356.
  6. Datta, A., J. B. Yeluripati, D. R. Nayak, K. R. Mahata, S. C. Santra, and T. K. Adhya, 2013: Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmospheric Environment 66, 114-122.
  7. Ferraz-Almeida, R., K. A. Spokas, and R. C. De Oliveira, 2020: Columns and detectors recommended in gas chromatography to measure greenhouse emission and O2 uptake in soil: A review. Communications in Soil Science and Plant Analysis 51(5), 582-594.
  8. GIR, 2023: National inventory report in Korea. Greenhouse Gas Inventory and Research Center, Seoul, Korea.
  9. Hatala, J. A., M. Detto, and D. D. Baldocchi, 2012: Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophysical Research Letters 39(6).
  10. Hou, A. X., G. X. Chen, Z. P. Wang, O. Van Cleemput, and W. H. Patrick Jr, 2000: Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal 64(6), 2180-2186.
  11. IPCC, 2006. IPCC guidelines for national greenhouse gas inventories.
  12. IPCC. 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
  13. Inubushi, K., K. Hori, S. Matsumoto, and H. Wada, 1997: Anaerobic decomposition of organic carbon in paddy soil in relation to methane emission to the atmosphere. Water Science and Technology 36(6-7), 523-530.
  14. Jennings, W., E. Mittlefehldt, and P. Stremple, 1997: Analytical gas chromatography. Academic Press.
  15. Jeong, H. C., E. J. Choi, J. S. Lee, G. Y. Kim, and S. I. Lee, 2018: Comparison of CH4 emission between auto chamber and manual chamber in the rice paddy. Journal of Climate Change Research 9(4), 377-384.
  16. King, J. A., and R. Harrison, 2002: Measuring soil respiration in the field: an automated closed chamber system compared with portable IRGA and alkali absorption methods. Communications in soil science and plant analysis 33(3-4), 403-423.
  17. Knox, S. H., J. H. Matthes, C. Sturtevant, P. Y. Oikawa, J. Verfaillie, and D. Baldocchi, 2016: Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Journal of Geophysical Research: Biogeosciences 121(3), 978-1001.
  18. Liu, X., X. Dai, F. Yang, S. Meng, and H. Wang, 2023: CH4 emissions from a double-cropping rice field in subtropical China over seven years. Agricultural and Forest Meteorology 339, 109578.
  19. Maboni, C., T. Bremm, L. J. G. Aguiar, W. B. Scivittaro, V. de Arruda Souza, H. R. Zimermann, C. A. Teichrieb, P. E. S. Oliveira, D. L. Herdies, G. A. Degrazia, and D. R. Roberti, 2021: The fallow period plays an important role in annual CH4 emission in a rice paddy in Southern Brazil. Sustainability 13(20), 11336.
  20. Metzger, S., G. Burba, S. P. Burns, P. D. Blanken, J. Li, H. Luo, and R. C. Zulueta, 2016: Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2. Atmospheric Measurement Techniques 9(3), 1341-1359.
  21. Meijide, A., G. Manca, I. Goded, V. Magliulo, P. Di Tommasi, G. Seufert, and A. Cescatti, 2011: Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences 8(12), 3809-3821.
  22. Minamikawa, K., K. Yagi, T. Tokida, B. O. Sander, and R. Wassmann, 2012: Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenhouse Gas Measurement and Management 2(2-3), 118-128.
  23. Mondini, C., T. Sinicco, M. L. Cayuela, and M. A. Sanchez-Monedero, 2010: A simple automated system for measuring soil respiration by gas chromatography. Talanta 81(3), 849-855.
  24. NAAS, 2010: Method of soil and plant analysis. National Academy of Agricultural Science, RDA, Suwon, Korea.
  25. Nouchi, I., S. Mariko, and K. Aoki, 1990: Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiology 94(1), 59-66.
  26. Parkin, T. B., and R. Venterea, 2010: Samplings Protocols. Chapter 3. Chamber-based trace gas flux measurements. In R. F. Follett (Ed.), Sampling protocols (Vol. 2010, pp. 3-1 to 3-39).
  27. Poole, C. F., 2015: Ionization-based detectors for gas chromatography. Journal of Chromatography A 1421, 137-153.
  28. Runkle, B. R., K. Suvočarev, M. L. Reba, C. W. Reavis, S. F. Smith, Y. L. Chiu, and B. Fong, 2018: Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method. Environmental science & technology 53(2), 671-681.
  29. Sander, B. O., and R. Wassmann, 2014: Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenhouse Gas Measurement and Management 4(1), 1-13.
  30. Satpathy, S. N., A. K. Rath, B. Ramakrishnan, Rao, R. V. T. K. Adhya, and N. Sethunathan, 1997: Diurnal variation in methane efflux at different growth stages of tropical rice. Plant and Soil 195(2), 267-271.
  31. Watanabe, A., M. Kimura, M. Kasuya, M. Kotake, and T. Katoh, 1994: Methane in groundwater used for Japanese agriculture: Its relationship to other physico-chemical properties and possible tropospheric source strength. Geophysical research letters 21(1), 41-44.
  32. Yagi, K., and K. Minami, 1990: Effect of organic matter application on methane emission from some Japanese paddy fields. Soil science and plant nutrition 36(4), 599-610.
  33. Yao, H., R. Conrad, R. Wassmann, and H. U. Neue, 1999: Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47, 269-295.