DOI QR코드

DOI QR Code

Sodium Hydrosulfide Enhances Drought Tolerance by Alleviating Oxidative Stress and Promoting Proline Accumulation in Brassica napus L.

  • Septi Anita Sari (Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Muchamad Muchlas (Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Bok-Rye Lee (Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Md Al Mamun (Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Tae-Hwan Kim (Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2024.09.11
  • 심사 : 2024.09.24
  • 발행 : 2024.09.30

초록

Drought is one of the environmental factors inhibiting plant productivity and growth, leading to oxidative damage. This study aims to identify the role of sodium hydrosulfide (NaHS) as a hydrogen sulfide (H2S) donor in drought stress tolerance in Brassica napus. Drought-induced stress symptoms appeared eight days after treatment, showing wilted leaves and a significant reduction of leaf water potential. Drought-induced increase of lipid peroxidation was significantly reduced by NaHS application. NaHS-treated plants mitigated stress symptoms under drought conditions by reducing hydrogen peroxide (H2O2) content, confirmed with H2O2 localization in situ. Furthermore, NaHS promotes photosynthetic activity by maintaining chlorophyll and carotenoid content, thereby supporting plant growth under drought conditions. Pyrroline-5-carboxylate and proline contents were significantly increased by drought but further enhanced by NaHS treatment, indicating the important roles of proline accumulation in drought stress tolerance. In conclusion, this study provides valuable insight into the roles of NaHS in alleviating drought stress by reducing oxidative stress and promoting proline accumulation. Therefore, NaHS may serve as an effective strategy to enhance crop production under drought-stress conditions.

키워드

과제정보

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A3072357).

참고문헌

  1. Ali, H., Mahmood, I., Ali, M.F., Waheed, A., Jawad, H., Hussain, S., Abasi, F., Zulfiqar, U., Siddiqui, M.H. and Alamri, S. 2024. Individual and interactive effects of amino acid and paracetamol on growth, physiological and biochemical aspects of Brassica napus L. under drought conditions. Heliyon. 10(11). doi:10.1016/j.heliyon.2024.e31544
  2. Azhar, M.T. and Rehman, A. 2018. Overview on effects of water stress on cotton plants and productivity. Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. pp. 297-316. doi:10.1016/B978-0-12-813066-7.00016-4
  3. Banerjee, A. and Roychoudhury, A. 2021. Roles of hydrogen sulfide in regulating temperature stress response in plants. In: Plant growth regulators: signalling under stress conditions. Springer international publishing. pp. 207-215. doi:10.1007/978-3-030-61153-8_10.
  4. Bilibio, C., Carvalho, J.D.A., Hensel, O. and Richter, U. 2011. Effect of different levels of water deficit on rapeseed (Brassica napus L.) crop. Ciencia e Agrotecnologia. 35:672-684.
  5. Guo, L., Ling, L., Wang, X., Cheng, T., Wang, H. and Ruan, Y. 2023. Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism. BMC Plant Biology. 23(1):73. doi:10.1186/s12870-023-04089-y
  6. Hasan, H., Uzma, Gul, A., Kubra, G., tuz Zahra Khan, F., Yousaf, S., Ajmal, K. B., Naseer, H., Khan, W., Amir, R., Ali, M. and Keyani, R. 2020. Role of osmoprotectants and drought tolerance in wheat. In: Climate change and food security with emphasis on wheat, Elsevier. pp. 207-216. doi:10.1016/B978-0-12-819527-7.00013-3
  7. Hasanuzzaman, M. and Fujita, M. 2022. Plant oxidative stress: Biology, physiology and mitigation. Plants. 11(9):1185. doi:10.3390/plants11091185
  8. Hodges, D.M., DeLong, J.M., Forney, C.F. and Prange, R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207:604-611.
  9. Hopkins, A., & Del Prado, A. (2007). Implications of climate change for grassland and livestock production. Grass and Forage Science. 62(2):118-126.
  10. Julia, G., Nathalia, B., Rosangela, M., Andrea, H., Douglas, D., Joao, B. and Luiz, V. 2014. Stress-induced ∆1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiologiae Plantarum. 36:2309-2319.
  11. Kavi Kishor, P.B. and Sreenivasulu, N. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell, and Environment. 37(2):300-311. doi:10.1111/pce.12157
  12. Kirkegaard, J.A., Lilley, J.M., Berry, P.M. and Rondanini, D.P. 2021. Canola, in: Crop Physiology Case Histories for Major Crops. Elsevier, pp. 518-549. doi:10.1016/B978-0-12-819194-1.00017-7
  13. Kour, D., Rana, K.L., Yadav, A.N., Sheikh, I., Kumar, V., Dhaliwal, H.S., et al. 2020. Amelioration of drought stress in foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth-promoting attributes. Journal of Environmental Sustainability. 3(1):23-34.
  14. La, V.H., Lee, B.R., Islam, M.T., Mamun, M.A., Park, S.H., Bae, D.W. and Kim, T.H. 2020. Characterization of glutamate-mediated hormonal regulatory pathway of the drought responses in relation to proline metabolism in Brassica napus L. Plants. 9(4):512.
  15. La, V.H., Lee, B.R., Islam, M.T., Park, S.H., Jung, H.I., Bae, D.W., et al. 2019a. Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environmental and Experimental Botany. 157:1-10.
  16. Lai, D.W., Mao, Y., Zhou, H., Li, F., Wu, M.Z., Zhang, J., He, Z.Y., Cui, W.T. and Xie, Y.J. 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the re-establishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science. 225:117-129.
  17. Lee, B.R., Jin, Y.L., Avice, J.C., Cliquet, J.B., Ourry, A. and Kim, T.H. 2009. Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytologist. 182(3):654-663.
  18. Lee, B.R., La, V.H., Park, S.H., Mamun, M.A., Bae, D.W. and Kim, T.H. 2022. H2O2-responsive hormonal status involves oxidative burst signaling and proline metabolism in rapeseed leaves. Antioxidants. 11(3):566.
  19. Lee, B.R., Muneer, S., Park, S.H., Zhang, Q. and Kim, T.H. 2013. Ammonium-induced proline and sucrose accumulation, and their significane in antioxidative activity and osmotic adjustment. Acta Physiologiae Plantarum. 35:2655-2664.
  20. Lee, B.R., Park, S.H., Muchlas, M., La, V.H., Mamun, M.A., Bae, D.W. and Kim, T.H. 2023. Differential response of phenylpropanoid pathway as linked to hormonal change in two Brassica napus cultivars contrasting drought tolerance. Physiologia Plantarum. 175(6):14115.
  21. Lisjak, M., Teklica, T., Wilson, I., Wood, M.E., Whiteman, M., Spol-jarevic, M. and Hancock, J.T. 2013. The role of H2S in pepper leaves under salt stress conditions. Nitric Oxide Biology and Chemistry. 6:42.
  22. Morales, M. and Munne-Bosch, S. 2019. Malondialdehyde: Facts and artifacts. Plant Physiology. 180(3):1246-1250. doi:10.1104/pp.19.00405
  23. Park, S.H., Lee, B.R., La, V.H., Mamun, M.A., Bae, D.W. and Kim, T.H. 2021. Characterization of salicylic acid- and abscisic acid-mediated photosynthesis, Ca2+ and H2O2 accumulation in two distinct phases of drought stress intensity in Brassica napus. Environmental and Experimental Botany. 186:104434.
  24. Rehman, A.U., Bashir, F., Ayaydin, F., Kota, Z., Pali, T. and Vass, I. 2021. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiologia Plantarum. 172:7-18.
  25. Rejeb, K., Abdelly, C. and Savoure, A. 2014. How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry. 80:278-284. doi:10.1016/j.plaphy.2014.04.007
  26. Rhaman, M.S., Rauf, F., Tania, S.S., Bayazid, N., Tahjib-ul-Arif, M., Robin, A.H.K., Hoque, M.A., Yang, X., Murata, Y. and Brestic, M. 2024. Proline and glycine betaine: A dynamic duo for enhancing salt stress resilience in maize by regulating growth, stomatal size, and oxidative stress responses. Plant Stress. 14:100563. doi:10.1016/j.stress.2024.100563
  27. Richardson, A.D., Duigan, S.P. and Berlyn, G.P. 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist. 153(1):185-194. doi:10.1046/j.0028-646X.2001.00289.x
  28. Salehi-Lisar, S.Y. and Bakhshayeshan-Agdam, H. 2016. Drought stress in plants: Causes, consequences, and tolerance. In: M. Hossain, S. Wani, S. Bhattacharjee, D. Burritt, L.S. Tran (Eds.), Drought stress tolerance in plants. Vol 1. Springer. Cham. doi:10.1007/978-3-319-28899-4_1
  29. Szabados, L. and Savoure, A. 2010. Proline: A multifunctional amino acid. Trends in Plant Science. 15:89-97.
  30. Yang, D., Ni, R., Yang, S., Pu, Y., Qian, M., Yang, Y. and Yang, Y. 2021b. Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions. International Journal of Molecular Sciences. 22(17):9599.
  31. Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z. and Chen, S. 2021a. Response mechanism of plants to drought stress. Horticulturae. 7(3):50.