과제정보
This work was supported by the 2024 education, research and student guidance grant funded by Jeju National University. Any correspondence related to this paper should be addressed to Do Hyeun Kim..
참고문헌
- Harle, R. (2013). A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials, 15(3), 1281-1293. https://doi.org/10.1109/SURV.2012.121912.00075
- Virrantaus, K.; Markkula, J.; Garmash, A.; Terziyan, V.; Veijalainen, J.; Katanosov, A.; Tirri, H. Developing GIS-supported location-based services. In Proceedings of the Second International Conference on Web Information Systems Engineering, Kyoto, Japan, pp.66-75, 2001. Virrantaus, K., Markkula, J., Garmash, A., Terziyan, V., Veijalainen, J., Katanosov, A., & Tirri, H. (2001, December).
- Grewal, M. S., Weill, L. R., & Andrews, A. P. (2007). Global positioning systems, inertial navigation, and integration. John Wiley & Sons.
- Bill, R., Cap, C., Kofahl, M., & Mundt, T. (2004). Indoor and outdoor positioning in mobile environments a review and some investigations on wlan positioning. Geographic Information Sciences, 10(2), 91-98.
- Wu, C.; Yang, Z.; Liu, Y. Wireless Indoor Localization. IEEE Trans. Parallel Distrib. Syst. pp.839-848, 2012.
- Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE personal communications, 7(5), 28-34. https://doi.org/10.1109/98.878533
- Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067-1080. https://doi.org/10.1109/TSMCC.2007.905750
- Jamil, F., Iqbal, N., Ahmad, S., & Kim, D. H. (2020). Toward accurate position estimation using learning to prediction algorithm in indoor navigation. Sensors, 20(16), 4410..
- Jamil, F., & Kim, D. H. (2019). Improving accuracy of the alpha-beta filter algorithm using an ANN-based learning mechanism in indoor navigation system. Sensors, 19(18), 3946..
- Jamil, F., & Kim, D. (2021). Enhanced Kalman filter algorithm using fuzzy inference for improving position estimation in indoor navigation. Journal of Intelligent & Fuzzy Systems, 40(5), 8991-9005. https://doi.org/10.3233/JIFS-201352
- Jamil, H., Qayyum, F., Jamil, F., & Kim, D. H. (2021). Enhanced pdr-ble compensation mechanism based on hmm and awcla for improving indoor localization. Sensors, 21(21), 6972..
- Dobbins, C., Rawassizadeh, R., & Momeni, E. (2017). Detecting physical activity within lifelogs towards preventing obesity and aiding ambient assisted living. Neurocomputing, 230, 110-132.. https://doi.org/10.1016/j.neucom.2016.02.088
- Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2625-2634).
- Burgos, C. P., Gartner, L., Ballester, M. A. G., Noailly, J., Stocker, F., Schonfelder, M., ... & Tassani, S. (2020). In-ear accelerometer-based sensor for gait classification. IEEE Sensors Journal, 20(21), 12895-12902. https://doi.org/10.1109/JSEN.2020.3002589
- Chan, T. F., Golub, G. H., & LeVeque, R. J. (1982). Updating formulae and a pairwise algorithm for computing sample variances. In COMPSTAT 1982 5th Symposium held at Toulouse 1982: Part I: Proceedings in Computational Statistics (pp. 30-41). Physica-Verlag HD.