DOI QR코드

DOI QR Code

THE SCHRÖDINGER EQUATION FOR AN EULER OPERATOR ON FOCK SPACES

  • Hong Rae Cho (Department of Mathematics, Pusan National University)
  • Received : 2024.09.13
  • Accepted : 2024.09.19
  • Published : 2024.09.30

Abstract

We consider the initial value problem of the Schrödinger equation for an Euler operator 𝓡 on ℂn that is an analogue of the harmonic oscillator in ℝn. We get some regularity results of the Schrödinger equation on Fock spaces.

Keywords

Acknowledgement

This work was financially supported by a 2-Year Research Grant of Pusan National University.

References

  1. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14 (1961), 187-214.
  2. E. A. Carlen, Some integral identities and inequalities for entire functions and their application to the coherent state transform, J. Funct. Anal. 97 (1991), 231-249.
  3. K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, Berlin, New York, 2000.
  4. R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill, Maidenhead, 1965.
  5. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.
  6. A. K. Nandakumaran and P. K. Ratnakumar, Schrodinger equation and the oscillatory semigroup for the Hermite operator, J. Funct. Anal. 224 (2005), 371-385.
  7. E. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172.
  8. P. R. Stinga and J. L. Torrea, Regularity theory for the fractional harmonic oscillator, J. Funct. Anal. 260 (2011), no. 10, 3097-3131.
  9. K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, 263. Springer, New York, 2012.