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THE SCHRÖDINGER EQUATION FOR AN EULER

OPERATOR ON FOCK SPACES∗

Hong Rae Cho

Abstract. We consider the initial value problem of the Schrödinger equa-

tion for an Euler operator R on Cn that is an analogue of the harmonic

oscillator in Rn. We get some regularity results of the Schrödinger equa-
tion on Fock spaces.

1. Introduction

Let H be the most basic Schrödinger operator in Rn, n ≥ 1, the Hermite
operator (or the harmonic oscillator):

H = −∆+ |x|2.

Then the Schrödinger equation for H can be written by

(i∂t −H)u = 0.

This is an important model in quantum mechanics (see for example [4] and
[6]). In [6], Nandakumarana and Ratnakumar considered the regularity of the
following initial value problem for the Schrödinger equation for H:{

(i∂t −H)u = 0 on Rn × (0,∞)

u(·, 0) = f on Rn.
(1)

Let Cn be the complex n-space. If z = (z1, · · · , zn) and w = (w1, · · · , wn)
are points in Cn, we write

z · w =

n∑
j=1

zjwj , |z| = (z · z)1/2.
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There is an interesting operator R on Cn, given by

R = 2

n∑
j=1

zj
∂

∂zj
+ n.

This R is an Euler operator.
The Bargmann transform B is defined by

Bf(z) = 1

πn/4
e

1
4 z

2

∫
Rn

f(x)e−
1
2 (z−x)2 dx,

where dx is the volume measure on Rn, x2 = x · x, and z2 = z · z. We know
that

BH = RB on L2(Rn).

By this relation, the Bargmann transform B maps the initial value problem (1)
to the equivalent form:{

(i∂t −R)u = 0 on Cn × (0,∞)

u(·, 0) = f on Cn.
(2)

Let dV be the ordinary volume measure on Cn. For any 0 < p ≤ ∞ we let
Lp
G(Cn) denote the space of Lebesgue measurable functions f on Cn such that

the function f(z)e−
1
4 |z|

2

is in Lp(Cn, dV ). When 0 < p < ∞, it is clear that

Lp
G(C

n) = Lp
(
Cn, e−

p
4 |z|

2

dV (z)
)
.

We define

∥f∥Lp
G
=

[( p

4π

)n ∫
Cn

∣∣∣f(z)e− 1
4 |z|

2
∣∣∣p dV (z)

] 1
p

.

For p = ∞ the norm in L∞
G (Cn) is defined by

∥f∥L∞
G

= esssup
{
|f(z)|e− 1

4 |z|
2

: z ∈ Cn
}
.

Let F p(Cn) denote the space of entire functions in Lp
G(Cn). If 0 < p < q, then

F p ⊂ F q, and the inclusion is proper and continuous (see [9]). Note that F 2 is
a closed subspace of the Hilbert space L2

G with inner product

⟨f, g⟩F 2 =
1

(2π)n

∫
Cn

f(z)g(z)e−
1
2 |z|

2

dV (z).

In this paper, we consider the regularity of the regularized problem{
(i∂t −R)u = 0 on Cn × (0,∞)

u(·, 0) = e−rRf on Cn.
(3)

Theorem 1.1. Let r ≥ 0. Then ur(z, t) = e−(r+it)Rf(z) is the solution of the
regularized problem (3) satisfying the inequality

sup
t∈R

∥ur(·, t)∥Fp ≤ ∥f∥Fp′ ,
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where 1 ≤ p′ ≤ 2, 2 ≤ p ≤ ∞ and 1
p + 1

p′ = 1.

2. Hermite operator and Euler operator

2.1. Hermite operator

The Hermite operator

H = −∆+ |x|2

is self-adjoint on the set of infinitely differentiable functions with compact sup-
port C∞

c (Rn), and it can be factorized as

H =
1

2

n∑
j=1

(
aja

†
j + a†jaj

)
,

where

aj =
∂

∂xj
+ xj and a†j = − ∂

∂xj
+ xj , 1 ≤ j ≤ n.

In one dimension, the Hermite polynomials Hk are defined by

Hk(x) = (−1)kex
2 dk

dxk

(
e−x2

)
, x ∈ R,

and by normalization we obtain the Hermite functions,

hk(x) =
1

π1/4

1√
2kk!

e−
1
2x

2

Hk(x), x ∈ R.

Let N0 = N ∪ {0} be the set of nonnegative integer. In higher dimensions,
for each multi-index I = (I1, · · · , In) ∈ Nn

0 , the Hermite polynomials HI are
defined by

HI(x) =

n∏
j=1

HIj (xj), x = (x1, · · · , xn) ∈ Rn

and the Hermite functions hI are defined by

hI(x) =

n∏
j=1

hIj (xj)

=
1

πn/4

1√
2|I|I!

e−
1
2x

2

HI(x), x = (x1, · · · , xn) ∈ Rn.

Then {hI : I ∈ Nn
0} is an orthonormal basis for L2(Rn).

Lemma 2.1 ([9]).

HhI = (2|I|+ n)hI .
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Let H be the space of finite linear combinations of Hermite functions,

f =
∑

|I|≤N

⟨f, hI⟩L2(Rn)hI ,

where

⟨f, hI⟩L2(Rn) =

∫
Rn

f(x)hI(x) dx.

The space H is dense in L2(Rn), and so, by the orthonormality of the Hermite
functions,

∥f∥L2(Rn) =

∑
I∈Nn

0

|⟨f, hI⟩L2(Rn)|2
1/2

.

Let S(Rn) be the Schwartz class of rapidly decreasing C∞(Rn) functions. For
f ∈ S(Rn), the Hermite series expansion∑

I∈Nn
0

⟨f, hI⟩L2(Rn)hI

converges to f uniformly in Rn (and also in L2(Rn)), since ∥hI∥L∞(Rn) ≤ C,
for all I ∈ Nn

0 , and for each m ∈ N, we have (see [8])

|⟨f, hI⟩L2(Rn)| ≤ ∥Hmf∥L2(Rn)(2|I|+ n)−m.

The spectral decomposition of H on Rn is given by

Hf =
∑
I∈Nn

0

(2|I|+ n)⟨f, hI⟩L2(Rn)hI .

2.2. Euler operator

The Euler operator R can be written by

R =
1

2

n∑
j=1

(
AjA

∗
j +A∗

jAj

)
,

where

Aj = 2
∂

∂zj
, A∗

j = zj , 1 ≤ j ≤ n.

Both Aj and A∗
j , as defined above, are densely defined linear operators on F p

(unbounded though).

Remark 1. Let

f(z) =

∞∑
k=0

zk1√
2
k
(k + 1)

√
k!
.

Then f ∈ F 2, but Rf /∈ F 2.
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The remark above tells us that Dom(R) ⊊ F 2. Thus R is an unbounded
operator on F 2. Moreover, we know that R is a positive, self-adjoint operator
on Dom(R).

For f ∈ F 2 let

f(z) =
∑
I∈Nn

0

cIeI(z)

be the orthonormal decomposition of f . Since R has the discrete spectrum
σ(R) = {2|I|+ n : I ∈ Nn

0}, Rf is given by

Rf(z) =
∑
I∈Nn

0

(2|I|+ n)cIeI(z), f ∈ Dom(R).

2.3. Bargmann transform

It is well-known that the Bargmann transform B is a unitary isomorphism
between L2(Rn) and F 2(Cn) ([1], [9]).

Lemma 2.2 ([9]). For each j = 1, . . . , n, we have

B(ajf) = AjB(f)

B(a†jf) = A∗
jB(f).

Lemma 2.3 ([9]). Let

eI(z) =
zI√
2|I|I!

.

Then {eI : I ∈ Nn
0} is an orthonormal basis for F 2 and B(hI) = eI .

Corollary 2.4. We have

BH = RB.

Proof. For f ∈ S(Rn) we have

Hf =
∑
I∈Nn

0

(2|I|+ n)⟨f, hI⟩L2(Rn)hI

and so

B(Hf) =
∑
I∈Nn

0

(2|I|+ n)⟨f, hI⟩L2(Rn)eI .

Since B is a unitary isomorphism, we have ⟨f, hI⟩L2(Rn) = ⟨B(f), eI⟩F 2 , hence

B(Hf) =
∑
I∈Nn

0

(2|I|+ n)⟨B(f), eI⟩F 2 eI = RB(f).

Thus we get the result. □
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3. Regularized Schrödinger equation

3.1. Euler semigroup

We know that {eI : I ∈ Nn
0} is an orthonormal basis for F 2. For f ∈ F 2 let

f(z) =
∑
I∈Nn

0

cIeI(z)

be the orthonormal decomposition of f . Associated with the operator R is a
semigroup {Bt}t≥0 defined by the expansion

Btf(z) =
∑
I∈Nn

0

e−i(2|I|+n)tcIeI(z).

It is easy to see that Btf(z) → f(z) in F 2 as t → 0+ by the dominated
convergence theorem since |e−i(2|α|+n)t − 1| ≤ 2. We know that {Bt}t≥0 is a
strongly continuous semigroup. Moreover, −iR is the infinitesimal generator of
{Bt}t≥0.

Proposition 3.1. −iR is the infinitesimal generator of {Bt}t≥0. That is,

lim
t→0+

Btf − f

t
= −iRf

for f ∈ Dom(R).

Proof. Let f ∈ Dom(R). Then we have

Btf(z)− f(z)

t
− (−iRf(z)) =

∑
I∈Nn

0

(
e−i(2|I|+n)t − 1

t
+ i(2|I|+ n)

)
cIeI(z).

We note that∣∣∣∣e−i(2|I|+n)t − 1

t
+ i(2|I|+ n)

∣∣∣∣ |cI ||eI(z)| ≤ 2(2|I|+ n)|cI ||eI(z)|

for small t > 0. Since

2
∑
I∈Nn

0

(2|I|+ n)|cI ||eI(z)| < ∞,

by the dominated convergence theorem, we have

lim
t→0+

∑
I∈Nn

0

(
e−i(2|I|+n)t − 1

t
+ i(2|I|+ n)

)
cIeI(z)

=
∑
I∈Nn

0

lim
t→0+

(
e−i(2|I|+n)t − 1

t
+ i(2|I|+ n)

)
cIeI(z) = 0.

Hence

lim
t→0+

Btf(z)− f(z)

t
= −iRf(z).



THE SCHRÖDINGER EQUATION FOR AN EULER OPERATOR 521

Since Btf and Rf belong to F 2, by the dominated convergence theorem again,
we have

lim
t→0+

∥∥∥∥Btf − f

t
− (−iRf)

∥∥∥∥2
F 2

= 0.

Thus we get the result. □

Thus, we have (see [3])

Bt = e−itR

and so u(z, t) = e−itR is the solution of the initial value problem:{
(i∂t −R)u = 0 on Cn × (0,∞)

u(·, 0) = f on Cn.

Proposition 3.2. The operator e−itR is unitary in F 2. Hence Dom(e−itR) =
F 2 and (e−itR)−1 = eitR.

Proof. For f ∈ F 2, we have a holomorphic expansion of f(z) =
∑

cαeα(z).
Then

u(z, t) = e−itRf(z)

= e−int
∑
α

e−2it|α|cαeα(z).

So we have

∥u(·, t)∥2F 2 = ⟨u(·, t), u(·, t)⟩

=

〈
e−int

∑
α

e−2it|α|cαeα, e
−int

∑
β

e−2it|β|cβeβ

〉
F 2

=
∑
α,β

cαcβe
−2it(|α|−|β|)⟨eα, eβ⟩F 2

=
∑
α

|cα|2 = ∥f∥2F 2 .

□

3.2. The kernel associated to the Euler semigroup

It is well-known ([1], [9]) that for f ∈ F 2 we have the reproducing formula
such that

f(z) =
1

(2π)n

∫
Cn

f(w)K(z, w)e−
1
2 |z|

2

dV (w),

where K(z, w) is the reproducing kernel defined by

K(z, w) =
∑
I

eI(z)eI(w).
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In fact, we know that

K(z, w) = e
1
2 z·w̄.

By the spectral theory,

u(z, t) = e−itRf(z)

= e−itR

(
1

(2π)n

∫
Cn

f(w)
∑
I

eI(z)eI(w)e
− 1

2 |w|2dV (w)

)

= e−itR

(∑
I

eI(z)

)
1

(2π)n

∫
Cn

f(w)eI(w)e
− 1

2 |w|2dV (w)

=
∑
I

e−it(2|I|+n)eI(z)
1

(2π)n

∫
Cn

f(w)eI(w)e
− 1

2 |w|2dV (w)

=
1

(2π)n

∫
Cn

f(w)
∑
I

e−it(2|I|+n)eI(z)eI(w)e
− 1

2 |w|2dV (w)

=
1

(2π)n

∫
Cn

f(w)Kt(z, w)e
−|w|2dV (w).

Interchanging the order of summation and integration is justified by the domi-
nated convergence theorem since∑

I

|eI(z)|
∫
Cn

|f(w)||eI(w)|e−
1
2 |w|2dV (w) ≤

∑
I

|zI |√
2|I|I!

∥f∥F 2

and the power series on the right side of the inequality above is convergent for
every z ∈ Cn.

Note that

Kt(z, w) =
∑
I

e−it(2|I|+n)eI(z)eI(w)

=e−int
∑
I

e−2it|I| z
Iw̄I

2|I|I!

=e−int exp

[
1

2
e−2itz · w̄

]
.

Hence Kt+2π(z, w) = Kt(z, w) and

|Kt(z, w)| = exp

[
Re

(
1

2
e−2itz · w̄

)]
≤ exp

(
1

2
|z · w̄|

)
.

3.3. Regularity of the regularized Schrödinger equation

By using Gross’s logarithmic Sobolev inequality [5], Carlen proved the hy-
percontractivity inequality:
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Lemma 3.3 ([2]). Let f ∈ H(Cn). Let r > 0 and 0 < p ≤ q < ∞. Then∥∥|f |r∥∥
Lq

G

≤
∥∥|f |r∥∥

Lp
G

and the estimate is sharp.

Proposition 3.4. Let 0 < p < ∞ and r > 0. Then e−rR is contraction on F p.

Proof. Let f ∈ F p. Then

∥e−rRf∥pFp =
( p

4π

)n ∫
Cn

∣∣∣e−rRf(z)e−
1
4 |z|

2
∣∣∣p dV (z)

=
( p

4π

)n
e−rnp

∫
Cn

∣∣∣f(e−2rz)e−
1
4 |z|

2
∣∣∣p dV (z)

≤
( p

4π

)n ∫
Cn

|f(w)|pe−
p
4 e

4r|w|2e4nr dV (w)

≤
(
pe4r

4π

)n ∫
Cn

∣∣∣|f(w)|se− 1
4 |w|2

∣∣∣pe4r dV (w)

=
∥∥|f |s∥∥pe4r

Lpe4r

G

,

where s = e−4r. By Lemma 3.3, we have∥∥|f |s∥∥pe4r
Lpe4r

G

≤
∥∥|f |s∥∥pe4r

Lp
G

.

Hence

∥e−rRf∥pFp ≤
∥∥|f |s∥∥pe4r

Lp
G

By Jensen’s inequality, we have∥∥|f |s∥∥pe4r
Lp

G

=

[( p

4π

)n ∫
Cn

|f(z)|
p

e4r e−
p
4 |z|

2

dV (z)

]e4r
≤
( p

4π

)n ∫
Cn

|f(z)|pe−
p
4 |z|

2

dV (z).

Therefore

∥e−rRf∥Fp ≤ ∥f∥Fp .

□

Now, we consider the regularity of the regularized problem{
(i∂t −R)u = 0 on Cn × (0,∞)

u(·, 0) = e−rRf on Cn.

Let

f(z) =

∞∑
k=0

fk(z),
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where

fk(z) =
∑
|I|=k

cIeI(z).

Then the solution in this case is given by

ur(z, t) = e−itRe−rRf(z) =

∞∑
k=0

e−(r+it)(2k+n)fk(z).

Let ζ = r + it, r > 0, t ∈ R. Then
ur(z, t) = e−itRe−rRf(z)

= e−ζR

(
1

(2π)n

∫
Cn

f(w)
∑
I

eI(z)eI(w)e
− 1

2 |w|2dV (w)

)

=
1

(2π)n

∫
Cn

f(w)
∑
I

e−ζ(2|I|+n)eI(z)eI(w)e
− 1

2 |w|2dV (w)

=
1

(2π)n

∫
Cn

f(w)Kζ(z, w)e
−|w|2dV (w),

where

Kζ(z, w) =

∞∑
k=0

e−ζ(2k+n)
∑
|I|=k

eI(z)eI(w)(4)

which is the kernel associated to the semigroup e−ζR. Clearly, the semigroup
e−ζR is also periodic in t with period 2π.

Lemma 3.5. Let ζ = r + it, r > 0, 0 < |t| ≤ π. Then

|Kζ(z, w)| ≤ e−nr exp

[
1

2
e−2r|z · w̄|

]
.

Proof. The above series can be re-written as

Kζ(z, w) = e−n(r+it) exp

[
1

2
e−2ζz · w̄

]
.

Hence

|Kζ(z, w)| = e−nr exp

[
1

2
Re(e−2ζz · w̄)

]
= e−nr exp

[
1

2
e−2rRe(e−2itz · w̄)

]
.

□

Theorem 3.6. Let r ≥ 0. Then ur(z, t) = e−(r+it)Rf(z) is the solution of the
regularized problem (3) satisfying the inequality

sup
t∈R

∥ur(·, t)∥Fp ≤ ∥f∥Fp′ ,
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where 1 ≤ p′ ≤ 2, 2 ≤ p ≤ ∞ and 1
p + 1

p′ = 1.

Proof. Let ζ = r + it. We note that

|Kζ(z, w)|e−
1
2 |w|2− 1

4 |z|
2

≤ e−nr exp

[
1

2
e−2rRe(e−2itz · w̄)

]
e−

1
2 |w|2− 1

4 |z|
2

≤ e−nr exp

[
1

2
e−2r|z · w̄|

]
e−

1
2 |w|2− 1

4 |z|
2

= e−nre
1
2 e

−2r|z·w̄|− 1
2 |w|2− 1

4 |z|
2

and

−1

2
|w|2 − 1

4
|z|2 + 1

2
|z · w̄| ≤ −1

2
|w|2 − 1

4
|z|2 + 1

2
|z||w| ≤ −1

4
|w|2.

Hence

∥ur(·, t)∥F∞ = sup
z∈Cn

|ur(z, t)|e−
1
4 |z|

2

≤ 1

(2π)n
sup
z∈Cn

[∫
Cn

|f(w)||Kζ(z, w)|e−
1
2 |w|2− 1

4 |z|
2

dV (w)

]
≤ e−nr 1

(2π)n

[∫
Cn

|f(w)|e− 1
4 |w|2dV (w)

]
≤ ∥f∥F 1 .

On the other hand, for f ∈ F 2, we have

ur(z, t) = e−itR(e−rRf
)
(z).

By Proposition 3.2 and Proposition 3.4, we have

∥ur(·, t)∥2F 2 = ∥e−itR(e−rRf
)
∥2F 2

= ∥e−rRf∥2F 2

≤ ∥f∥2F 2 .

Hence by Riesz-Thorin interpolation theorem [7], for p ∈ [1, 2] we have

sup
t∈R

∥ur(·, t)∥Fp ≤ ∥f∥Fp′ ,

where 1 ≤ p′ ≤ 2, 2 ≤ p ≤ ∞ and 1
p + 1

p′ = 1. □
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