DOI QR코드

DOI QR Code

Numerical simulation of the effect of pipe size and foam inlet angle on mixing of cement slurry and foam

  • Leilei Wang (Department of Building Engineering, Zibo Vocational Institute)
  • Received : 2023.11.30
  • Accepted : 2024.09.11
  • Published : 2024.05.25

Abstract

In order to improve the mixing effect of slurry-foam during the preparation of foam concrete, this study takes an SK static mixer as the mixing device, establishes a three-dimensional physical model and a theoretical calculation model, and numerically simulates the effects of different parameters such as foam inlet angle and pipe inner diameter on the mixing of cement slurry and foam under the given boundary conditions, so as to optimize the structure of this mixing device. The results show that when the pipe diameter of the mixer is larger than 60 mm, the phenomenon of backflow occurs in the pipe, which affects the mixing effect. The smaller the pipe diameter, the shorter the distance required to stabilize the cross-sectional average density and density uniformity index. When the foam inlet angle is different, the average density and density uniformity index of the radial cross-section have the same rule of change along the length of the pipeline, and all of them tend to stabilize gradually. At Y = 0.5 m, the average density basically stabilizes at 964 kg/m3 and remains stable until the outlet. At Y = 0.6 m, the density uniformity index basically stabilizes above 0.995 and remains stable until the outlet. Except for the foam inlet position (Y = 0.04 m), the foam inlet angle has little effect on the cross-sectional average density and density uniformity index. Under the boundary conditions given in this study, a pipe diameter of 40 mm, a foam inlet angle of 90°, and a pipe length of 700 mm are the optimal geometries for the preparation of homogeneous foam concrete with a density of 964 kg/m3 in this static mixer.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Shandong Provincial Education System Government Sending Overseas Study Programme in 2022, Zibo Science and Technology Development Program Project (No. 2017kj010054), Shandong Province Vocational Education Teaching Reform Research Program (No. 2022047) and Shandong Province Art Science Project (No. 23YZ09230005)

References

  1. Ansys Inc. (2016), Ansys fluent theory guide, ANSYS Inc., Canonsburg, PA, USA.
  2. Bambang, S. (2014), "Toward green concrete for better sustainable environment", Procedia Eng., 95, 305-320. https://doi.org/10.1016/j.proeng.2014.12.190
  3. Cao, Q., Zhou, J., Qian, Y. and Yang, S.Y. (2023), "Three-dimensional model on liquid-liquid mass transfer of the kenics static mixer: considering dynamic droplet size distribution", Industr. Eng. Chem. Res., 62(27), 10507-10522. https://doi.org/10.1021/acs.iecr.3c00285
  4. Falliano, D., Domenico, D.D., Ricciardi, G. and Gugliandolo, E. (2018), "Experimental investigation on the compressive strength of foamed concrete: effect of curing conditions, cement type, foaming agent and dry density", Constr. Build. Mater., 165, 735-749. https://doi.org/10.1016/j.conbuildmat.2017.12.241
  5. JB/T 7660-1995 (1996), Static mixers, China Machinery Industry Standard JB/T 7660-1995, Ministry of Machinery of the People's Republic of China; Beijing, People's Republic of China.
  6. Jiang, X., Xiao, Z., Jiang, J., Yang, X. and Wang, R. (2021), "Effect of element thickness on the pressure drop in the kenics static mixer", Chem. Eng. J., 424, Article ID 130399. https://doi.org/10.1016/j.cej.2021.130399
  7. Jokic, A., Lukic, N., Pajcin, I., Vlajkov, V., Dmitrovic, S. and Grahovac, J. (2022), "Kenics static mixer combined with gas sparging for the improvement of cross-Flow micro-filtration: modeling and optimization", Membranes, 12(7), Article ID 690. https://doi.org/10.3390/membranes12070690
  8. Kilincarslan, S., Davraz, M. and Akca, M. (2018), "The effect of pumice as aggregate on the mechanical and thermal properties of foam concrete", Arab. J. Geosci., 11(11), Article ID 289. https://doi.org/10.1007/s12517-018-3627-y
  9. Li, H., Yu, X., Song, Y., Li, Q. and Lu, S.X. (2023), "Experimental and numerical investigation on optimization of foaming performance of the kenics static mixer in compressed air foam system", Eng. Applicat. Computat. Fluid Mech., 17(1), Article ID 2183260. https://doi.org/10.1080/19942060.2023.2183260
  10. Liew, K.M., Sojobi, A.O. and Zhang, L.W. (2017), "Green concrete: prospects and challenges", Constr. Build. Mater., 156, 1063-1095. https://doi.org/10.1016/j.conbuildmat.2017.09.008
  11. Mahammedi, A., Ameur, H. and Ariss, A. (2017), "Numerical investigation of the performance of Kenics static mixers for the agitation of shear thinning fluids", J. Appl. Fluid Mech., 10(3), 989-999. https://doi.org/10.18869/acadpub.jafm.73.240.27314
  12. Majumdar, S. (1988), "Role of under relaxation calculation of flow with non-staggered on momentum interpolation for grids", Numer. Heat Transfer, 13(1), 125-132. https://doi.org/10.1080/10407788808913607
  13. Martyn, R.J., Kezban, O. and Li, Z. (2017), "High-volume, ultra low-density fly ash foamed concrete", Magaz. Concrete Res., 69(22), 1146-1156. https://doi.org/10.1680/jmacr.17.00063
  14. Raj, A., Sathyan, D. and Mini, K.M. (2019), "Physical and functional characteristics of foam concrete: A review", Constr. Build. Mater., 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  15. Saadullah, S.T., Haido, J.H. and Al-Kamaki, Y.S.S. (2023), "Mechanical properties of sustainable green self-compacting concrete incorporating recycled waste PET: a state-of-the-art review", Adv. Concrete Constr., Int. J., 16(1), 35-57. https://doi.org/10.12989/acc.2023.16.1.035
  16. Silva, T., Peri, P., Fajardo, A., Paulista, L.O., Soares, P.A., Martinez-Huitle, C.A. and Vilar, V.J.P. (2022), "Solar-driven heterogeneous photo catalysis using a static mixer as TiO2-P25 support: impact of reflector optics and material", Chem. Eng. J., 435, Article ID 134831. https://doi.org/10.1016/j.cej.2022.134831
  17. Sun, J.K., Li, R.Y.M, Li, L.D, Deng, C.X., Ma, S.S. and Zeng, L.Y. (2023), "Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach", Adv. Concrete Constr., Int. J., 15(5), 333-348. https://doi.org/10.12989/acc.2023.15.5.333
  18. Tan, X.J. Chen, W.Z., Wang, J.H., Yang, D.S, Qi, X.Y, Ma, Y.S, Wang, X., Ma, S.S. and Li, C.J. (2017), "Influence of high temperature on the residual physical and mechanical properties of foamed concrete", Constr. Build. Mater., 135, 203-211. https://doi.org/10.1016/j.conbuildmat.2016.12.223
  19. Tang, P., Yang, J., Zheng, J.Y, Wong, I., He, S.Z., Ye, J.J. and Ou, G.F. (2009), "Failure analysis andprediction of pipes due to the interaction between multiphase flow and structure", Eng. Fail. Anal., 16, 1749-1756. https://doi:10.1016/j.engfailanal.2009.01.002
  20. Thomas, K.M., Nyande, B.W. and Lakerveld, R. (2022), "Design and characterization of kenics static mixer crystallizers", Chem. Eng. Res. Des., 179, 549-563. https://doi.org/10.1016/j.cherd.2022.01.025
  21. Wang, F.J. (1994), Computational Fluid Dynamics Analysis: CFD Software Principles and Applications, Tsinghua University Press, Beijing, People's Republic of China.
  22. Wang, C., Liu, H. Yang, X. and Wang, R.J. (2021), "Research for a non-standard kenics static mixer with an eccentricity factor", Processes, 9(8), Article ID 1353. https://doi.org/10.3390/pr9081353
  23. Wee, T.H., Daneti, S.B. and Tamilselvan, T. (2011), "Effect of w/c ratio on air-void system of foamed concrete and their influence on mechanical properties", Magaz. Concrete Res., 63(8), 583-595. https://doi.org/10.1680/macr.2011.63.8.583
  24. Zhao, S., Zhang, X., Wang, H., Zhang, H. and Huang, J.W. (2023), "Numerical simulation on enhanced heat transfer and flow characteristics in direct-contact heat exchanger: a novel kenics static mixer", Int. J. Energy Res., 2023, Article ID 4959962. https://doi.org/10.1155/2023/4959962
  25. Zheng, L., Wang, X.X., Wang, Y.G. and Li, J.X. (2018), "Review of studies of foam concrete", Guangdong Architect. Civil Eng., 25(11), 21-26. https://doi.org/10.19731/j.gdtmyjz.2018.11.006