DOI QR코드

DOI QR Code

Dual potential capacity model for predicting failure of RC beams damaged by corrosion of tensile reinforcement

  • Sun-Jin Han (Department of Architectural Engineering, Jeonju University) ;
  • Deuckhang Lee (Department of Architectural Engineering, Chunbuk National University) ;
  • Hyo-Eun Joo (Department of Civil Engineering, The University of Tokyo) ;
  • Kang Su Kim (Department of Architectural Engineering and Smart City Interdisciplinary Major Program, University of Seoul)
  • Received : 2023.09.13
  • Accepted : 2024.08.02
  • Published : 2024.10.25

Abstract

This study presents an analysis model to estimate the shear strength of a reinforced concrete (RC) member with corroded tensile reinforcements. The thick-walled cylinder theory was modified to fit the dual potential capacity model to reflect interdependent failure mechanisms, including the degradation effect of bonds in corroded tensile reinforcement. In the proposed model, it is considered that the shear failure of corroded RC members with no proper anchorage detail is primarily dominated by the flexural-bond mechanism, where insufficient bond strength is provided owing to corrosion damage. However, when tensile reinforcements are properly anchored in the end regions using end hooks or mechanical devices, it is assumed that the tied-arch action can be developed as a secondary shear transfer mechanism, even under severe corrosion damage. The proposed model was verified by comparison with shear test results of corroded RC members collected from the literature, and it appeared that the proposed model can estimate their shear strengths with a good level of accuracy, regardless of various anchorage details and corrosion rates in tensile reinforcements.

Keywords

Acknowledgement

The first author would like to acknowledge that this work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-00220019). The fourth author also would like to express that research was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023).

References

  1. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19), American Concrete Institute, Farmington Hills, MI, USA.
  2. Al-Sulaimani, G.J., Kaleemullah, M., Basunbul, I.A. and Rasheeduzzafar (1990), "Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members", ACI Struct. J., 87(2), 220-231. https://doi.org/10.14359/2732.
  3. Almusallam, A.A., Al-Gahtani, A.S., Aziz, A.R. and Rasheeduzzafar (1996), "Effect of reinforcement corrosion on bond strength", Constr. Build. Mater., 10(2), 123-129. https://doi.org/10.1016/0950-0618(95)00077-1.
  4. Auyeung, Y.B., Balaguru, P. and Chung, L. (2000), "Bond behavior of corroded reinforcement bars", ACI Mater. J., 97(2), 214-220. https://doi.org/10.14359/826.
  5. Azam, R. (2010), "Behaviour of shear critical RC beams with corroded longitudinal steel reinforcement", Master Thesis, University of Waterloo, Waterloo, ON, Canada.
  6. Cabrera, J.G. (1996), "Deterioration of concrete due to reinforcement steel corrosion", Cement Concrete Compos., 18(1), 47-59. https://doi.org/10.1016/0958-9465(95)00043-7.
  7. Carins, J. and Abdullah, R.B. (1996), "Bond strength of black and epoxy-coated reinforcement-A theoretical approach", ACI Mater. J., 93(3), 362-369. https://doi.org/10.14359/9823.
  8. Cavaleri, L., Barkhordari, M.S., Repapis, C.G., Armaghani, D.J., Ulrikh, D.V. and Asteris, P.G. (2022), "Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete", Constr. Build. Mater., 359, 129504. https://doi.org/10.1016/j.conbuildmat.2022.129504.
  9. Chen, H.P. and Nepal, J. (2020), "Load bearing capacity reduction of concrete structures due to reinforcement corrosion", Struct. Eng. Mech., 75(4), 455-464. https://doi.org/10.12989/sem.2020.75.4.455.
  10. Chen, L., Zhou, Y., Zhao, J., Li, K. and Chen, D. (2024), "Data-driven prediction method for shear capacity of corroded rectangular reinforced concrete shear walls under varied failure modes", Struct., 59, 105723. https://doi.org/10.1016/j.istruc.2023.105723.
  11. Chen, W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York, NY, USA.
  12. Chen, X., Zhang, Q., Chen, P. and Liang, Q. (2021), "Numerical model for local corrosion of steel reinforcement in reinforced concrete structure", Comput. Concrete, 27(4), 385-393. https://doi.org/10.12989/cac.2021.27.4.385.
  13. Chung, L., Kim, J.H.J. and Yi, S.T. (2008), "Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars", Cement Concrete Compos., 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006.
  14. Concha, N.C. and Oreta, A.W. (2021), "Investigation of the effects of corrosion on bond strength of steel in concrete using neural network", Comput. Concrete, 28(1), 77-91. https://doi.org/10.12989/cac.2021.28.1.077.
  15. Coronelli, D. (2002), "Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete", ACI Struct. J., 99(3), 267-276. https://doi.org/10.14359/11910.
  16. Han, S.J., Joo, H.E., Choi, S.H., Heo, I., Kim, K.S. and Seo, S.Y. (2019), "Experimental study on shear capacity of reinforced concrete beams with corroded longitudinal reinforcement", Mater., 12, 837. https://doi.org/10.3390/MA12050837.
  17. Han, S.J., Lee, D., Yi, S.T. and Kim, K.S. (2020), "Experimental shear tests of reinforced concrete beams with corroded longitudinal reinforcement", Struct. Concrete, 21(5), 1763-1776. https://doi.org/10.1002/suco.201900248.
  18. Han, S.J., Lee, D.H., Kim, K.S., Seo, S.Y., Moon, J. and Monteiro, P.J.M. (2014), "Degradation of flexural strength in reinforced concrete members caused by steel corrosion", Constr. Build. Mater., 54(1), 572-583. https://doi.org/10.1016/j.conbuildmat.2013.12.101.
  19. Huang, L., Jin, X., Fu, C., Ye, H. and Dong, X. (2021), "Stochastic characteristics of reinforcement corrosion in concrete beams under sustained loads", Comput. Concrete, 25(5), 447-460. https://doi.org/10.12989/cac.2020.25.5.447.
  20. Huang, T., Liu, T., Ai, Y., Ren, Z., Ou, J. and Xu, N. (2023), "Modelling the interface bond strength of corroded reinforced concrete using hybrid machine learning algorithms", J. Build. Eng., 74, 106862. https://doi.org/10.1016/j.jobe.2023.106862.
  21. International Federation for Structural Concrete (2012), fib Model Code 2010, fib Bulletins 65 & 66, International Federation for Structural Concrete, Lausanne, Switzerland.
  22. Jiang, C., Ding, H., Gu, X.L. and Zhang, W.P. (2022), "Failure mode-based calculation method for bending bearing capacities of normal cross-sections of corroded reinforced concrete beams", Eng. Struct., 258, 114113. https://doi.org/10.1016/j.engstruct.2022.114113.
  23. Ju, H., Lee, D., Park, M.K. and Ali Memon, S. (2021), "Punching shear strength model for reinforced concrete flat plate slab-column connection without shear reinforcement", J. Struct. Eng., 147(3), 04020358. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002939.
  24. Kani, G.N.J. (1964), "the riddle of shear failure and its solution", ACI J. Proc., 61(4), 441-468. https://doi.org/10.14359/7791.
  25. Kani, G.N.J. (1967), "How safe are our large reinforced concrete beams?", ACI J. Proc., 64(3), 128-141. https://doi.org/10.14359/7549.
  26. Kim, K.H., Jang, S.Y., Jang, B.S. and Oh, B.H. (2010), "Modeling mechanical behavior of reinforced concrete due to corrosion of steel bar", ACI Mater. J., 107(2), 106-113. https://doi.org/10.14359/51663573.
  27. Lachemi, M., Al-Bayati, N., Sahmaran, M. and Anil, O. (2014), "The effect of corrosion on shear behavior of reinforced self-consolidating concrete beams", Eng. Struct., 79, 1-12. https://doi.org/10.1016/j.engstruct.2014.07.044.
  28. Lee, D., Han, S.J., Joo, H.E., Kim, K.S., Zhang, D. and Kim, J. (2020), "Shear crack concentration in reinforced concrete beams subjected to shear and flexure", Adv. Struct. Eng., 23(11), 2305-2317. https://doi.org/10.1177/1369433219895911.
  29. Lee, D., Han, S.J., Ju, H. and Kim, K.S. (2021), "Shear strength of prestressed concrete beams considering bond mechanism in reinforcement", ACI Struct. J., 118(3), 267-277. https://doi.org/10.14359/51730531.
  30. Lee, D.H., Han, S.J. and Kim, K.S. (2016), "Dual potential capacity model for reinforced concrete beams subjected to shear", Struct. Concrete, 17(3), 443-456. https://doi.org/10.1002/suco.201500165.
  31. Lee, D.H., Han, S.J., Hwang, J.H., Ju, H. and Kim, K.S. (2017), "Simplification and verification of dual potential capacity model for reinforced concrete beams subjected to shear", Struct. Concrete 18(2), 259-277. https://doi.org/10.1002/suco.201600055.
  32. Lee, D.H., Kim, K.S., Han, S.J., Zhang, D. and Kim, J. (2018), "Dual potential capacity model for reinforced concrete short and deep beams subjected to shear", Struct. Concrete, 19(1), 76-85. https://doi.org/10.1002/suco.201700202.
  33. Lee, H.S., Noguchi, T. and Tomosawa, F. (2002), "Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion", Cement Concrete Res., 32(8), 1313-1318. https://doi.org/10.1016/S0008-8846(02)00783-4.
  34. Liu, T., Huang, T., Ou, J., Xu, N., Li, Y., Ai, Y. and Xu, Z. (2023), "Modeling the load carrying capacity of corroded reinforced concrete compression bending members using explainable machine learning", Mater. Today Commun., 36, 106781. https://doi.org/10.1016/j.mtcomm.2023.106781.
  35. Liu, Y. and Weyers, R.E. (1998), "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures", ACI Mater. J., 95(6), 675-681. https://doi.org/10.14359/410.
  36. Maaddawy, T.E., Soudki, K. and Topper, T. (2005a), "Analytical model to predict nonlinear flexural behavior of corroded reinforced concrete beams", ACI Struct. J., 102(4), 550-559. https://doi.org/10.14359/14559.
  37. Maaddawy, T.E., Soudki, K. and Topper, T. (2005b), "Long-term performance of corrosion-damaged reinforced concrete beams", ACI Struct. J., 102(5), 649-659. https://doi.org/10.14359/14660.
  38. Oh, B.H., Cho, Y.G., W., Cha, S. and Chung, W.K. (1996), "A new method on the prediction of corrosion resistance of reinforced concrete using accelerated potentiometric corrosion method", J. Korea Concrete Inst., 8(5), 201-209.
  39. Oh, B.H., Kim, K.H. and Jang, B.S. (2009), "Critical corrosion amount to cause cracking of reinforced concrete structures", ACI Mater. J., 106(4), 333-339. https://doi.org/10.14359/56653.
  40. Oh, B.H., Kim, K.H., Jang, S.Y., Jiang, Y.R., and Jang, B.S. (2002), "Cracking behavior of reinforced concrete structures due to reinforcing steel corrosion", J. Korea Concrete Inst., 14(6), 851-863.
  41. Pantazopoulou, S.J. and Papoulia, K.D. (2001), "Modeling cover-cracking due to reinforcement corrosion in RC structures", J. Eng. Mech., 127(4), 342-351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342).
  42. Park, H.G., Choi, K.K. and Wight, J.K. (2006), "Strain-based shear strength model for slender beams without web reinforcement", ACI Struct. J., 103(6), 783-793. https://doi.org/10.14359/18228.
  43. Raoof, M. and Lin, Z. (1997), "Structural characteristics of RC beams with exposed main steel", Proc. Inst. Civil Eng. Struct. Build., 122(1), 35-51. https://doi.org/10.1680/istbu.1997.29166.
  44. Shang, F., An, X., Mishima, T. and Maekawa, K. (2011), "Three-dimensional nonlinear bond model incorporating transverse action in corroded RC members", J. Adv. Concrete Technol., 9(1), 89-102. https://doi.org/10.3151/jact.9.89.
  45. Shirkhani, A., Davarnia, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273.
  46. Toongoenthong, K. and Maekawa, K. (2004), "Interaction of pre-induced damages along main reinforcement and diagonal shear in RC members", J. Adv. Concrete Technol., 2(3), 431-443. https://doi.org/10.3151/jact.2.431.
  47. Ugural, A.C. and Fenster, S.K. (2003), Advanced Strength and Applied Elasticity, Prentice-Hall Canada, Toronto, ON, Canada.
  48. Vecchio, F.H. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J. Proc., 83(2), 219-231. https://doi.org/10.14359/10416.
  49. Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: Formulation", J. Struct. Eng., 126, 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070).
  50. Wang, X.H. and Liu, X.L. (2004a), "Modeling bond strength of corroded reinforcement without stirrups", Cement Concrete Res., 34(8), 1331-1339. https://doi.org/10.1016/j.cemconres.2003.12.028.
  51. Wang, X.H. and Liu, X.L. (2004b), "Modelling effects of corrosion on cover cracking and bond in reinforced concrete", Mag. Concrete Res., 56(4), 191-199. https://doi.org/10.1680/macr.56.4.191.36306.
  52. Wang, X.H. and Liu, X.L. (2010), "Simplified methodology for the evaluation of the residual strength of corroded reinforced concrete beams", J. Perform. Constr. Facil., 24(2), 108-119. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000083.
  53. Xu, Y.L. (1990), "Experimental study of anchorage properties for deformed bars in concrete", Ph.D. Dissertation, Tsinhua University, Baeijing, China.
  54. Xue, X. and Seki, H. (2010), "Influence of longitudinal bar corrosion on shear behavior of RC beams", J. Adv. Concrete Technol., 8(2), 145-156. https://doi.org/10.3151/jact.8.145.
  55. Zhang, W., Lee, D., Ogwu, I. and Okonkwo, M.M. (2021), "Nonlinear shear analysis of corroded RC beams considering bond mechanism", ACI Struct. J., 118(6), 47-61. https://doi.org/10.14359/51732996.