Acknowledgement
The first author would like to acknowledge that this work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-00220019). The fourth author also would like to express that research was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023).
References
- ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19), American Concrete Institute, Farmington Hills, MI, USA.
- Al-Sulaimani, G.J., Kaleemullah, M., Basunbul, I.A. and Rasheeduzzafar (1990), "Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members", ACI Struct. J., 87(2), 220-231. https://doi.org/10.14359/2732.
- Almusallam, A.A., Al-Gahtani, A.S., Aziz, A.R. and Rasheeduzzafar (1996), "Effect of reinforcement corrosion on bond strength", Constr. Build. Mater., 10(2), 123-129. https://doi.org/10.1016/0950-0618(95)00077-1.
- Auyeung, Y.B., Balaguru, P. and Chung, L. (2000), "Bond behavior of corroded reinforcement bars", ACI Mater. J., 97(2), 214-220. https://doi.org/10.14359/826.
- Azam, R. (2010), "Behaviour of shear critical RC beams with corroded longitudinal steel reinforcement", Master Thesis, University of Waterloo, Waterloo, ON, Canada.
- Cabrera, J.G. (1996), "Deterioration of concrete due to reinforcement steel corrosion", Cement Concrete Compos., 18(1), 47-59. https://doi.org/10.1016/0958-9465(95)00043-7.
- Carins, J. and Abdullah, R.B. (1996), "Bond strength of black and epoxy-coated reinforcement-A theoretical approach", ACI Mater. J., 93(3), 362-369. https://doi.org/10.14359/9823.
- Cavaleri, L., Barkhordari, M.S., Repapis, C.G., Armaghani, D.J., Ulrikh, D.V. and Asteris, P.G. (2022), "Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete", Constr. Build. Mater., 359, 129504. https://doi.org/10.1016/j.conbuildmat.2022.129504.
- Chen, H.P. and Nepal, J. (2020), "Load bearing capacity reduction of concrete structures due to reinforcement corrosion", Struct. Eng. Mech., 75(4), 455-464. https://doi.org/10.12989/sem.2020.75.4.455.
- Chen, L., Zhou, Y., Zhao, J., Li, K. and Chen, D. (2024), "Data-driven prediction method for shear capacity of corroded rectangular reinforced concrete shear walls under varied failure modes", Struct., 59, 105723. https://doi.org/10.1016/j.istruc.2023.105723.
- Chen, W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York, NY, USA.
- Chen, X., Zhang, Q., Chen, P. and Liang, Q. (2021), "Numerical model for local corrosion of steel reinforcement in reinforced concrete structure", Comput. Concrete, 27(4), 385-393. https://doi.org/10.12989/cac.2021.27.4.385.
- Chung, L., Kim, J.H.J. and Yi, S.T. (2008), "Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars", Cement Concrete Compos., 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006.
- Concha, N.C. and Oreta, A.W. (2021), "Investigation of the effects of corrosion on bond strength of steel in concrete using neural network", Comput. Concrete, 28(1), 77-91. https://doi.org/10.12989/cac.2021.28.1.077.
- Coronelli, D. (2002), "Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete", ACI Struct. J., 99(3), 267-276. https://doi.org/10.14359/11910.
- Han, S.J., Joo, H.E., Choi, S.H., Heo, I., Kim, K.S. and Seo, S.Y. (2019), "Experimental study on shear capacity of reinforced concrete beams with corroded longitudinal reinforcement", Mater., 12, 837. https://doi.org/10.3390/MA12050837.
- Han, S.J., Lee, D., Yi, S.T. and Kim, K.S. (2020), "Experimental shear tests of reinforced concrete beams with corroded longitudinal reinforcement", Struct. Concrete, 21(5), 1763-1776. https://doi.org/10.1002/suco.201900248.
- Han, S.J., Lee, D.H., Kim, K.S., Seo, S.Y., Moon, J. and Monteiro, P.J.M. (2014), "Degradation of flexural strength in reinforced concrete members caused by steel corrosion", Constr. Build. Mater., 54(1), 572-583. https://doi.org/10.1016/j.conbuildmat.2013.12.101.
- Huang, L., Jin, X., Fu, C., Ye, H. and Dong, X. (2021), "Stochastic characteristics of reinforcement corrosion in concrete beams under sustained loads", Comput. Concrete, 25(5), 447-460. https://doi.org/10.12989/cac.2020.25.5.447.
- Huang, T., Liu, T., Ai, Y., Ren, Z., Ou, J. and Xu, N. (2023), "Modelling the interface bond strength of corroded reinforced concrete using hybrid machine learning algorithms", J. Build. Eng., 74, 106862. https://doi.org/10.1016/j.jobe.2023.106862.
- International Federation for Structural Concrete (2012), fib Model Code 2010, fib Bulletins 65 & 66, International Federation for Structural Concrete, Lausanne, Switzerland.
- Jiang, C., Ding, H., Gu, X.L. and Zhang, W.P. (2022), "Failure mode-based calculation method for bending bearing capacities of normal cross-sections of corroded reinforced concrete beams", Eng. Struct., 258, 114113. https://doi.org/10.1016/j.engstruct.2022.114113.
- Ju, H., Lee, D., Park, M.K. and Ali Memon, S. (2021), "Punching shear strength model for reinforced concrete flat plate slab-column connection without shear reinforcement", J. Struct. Eng., 147(3), 04020358. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002939.
- Kani, G.N.J. (1964), "the riddle of shear failure and its solution", ACI J. Proc., 61(4), 441-468. https://doi.org/10.14359/7791.
- Kani, G.N.J. (1967), "How safe are our large reinforced concrete beams?", ACI J. Proc., 64(3), 128-141. https://doi.org/10.14359/7549.
- Kim, K.H., Jang, S.Y., Jang, B.S. and Oh, B.H. (2010), "Modeling mechanical behavior of reinforced concrete due to corrosion of steel bar", ACI Mater. J., 107(2), 106-113. https://doi.org/10.14359/51663573.
- Lachemi, M., Al-Bayati, N., Sahmaran, M. and Anil, O. (2014), "The effect of corrosion on shear behavior of reinforced self-consolidating concrete beams", Eng. Struct., 79, 1-12. https://doi.org/10.1016/j.engstruct.2014.07.044.
- Lee, D., Han, S.J., Joo, H.E., Kim, K.S., Zhang, D. and Kim, J. (2020), "Shear crack concentration in reinforced concrete beams subjected to shear and flexure", Adv. Struct. Eng., 23(11), 2305-2317. https://doi.org/10.1177/1369433219895911.
- Lee, D., Han, S.J., Ju, H. and Kim, K.S. (2021), "Shear strength of prestressed concrete beams considering bond mechanism in reinforcement", ACI Struct. J., 118(3), 267-277. https://doi.org/10.14359/51730531.
- Lee, D.H., Han, S.J. and Kim, K.S. (2016), "Dual potential capacity model for reinforced concrete beams subjected to shear", Struct. Concrete, 17(3), 443-456. https://doi.org/10.1002/suco.201500165.
- Lee, D.H., Han, S.J., Hwang, J.H., Ju, H. and Kim, K.S. (2017), "Simplification and verification of dual potential capacity model for reinforced concrete beams subjected to shear", Struct. Concrete 18(2), 259-277. https://doi.org/10.1002/suco.201600055.
- Lee, D.H., Kim, K.S., Han, S.J., Zhang, D. and Kim, J. (2018), "Dual potential capacity model for reinforced concrete short and deep beams subjected to shear", Struct. Concrete, 19(1), 76-85. https://doi.org/10.1002/suco.201700202.
- Lee, H.S., Noguchi, T. and Tomosawa, F. (2002), "Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion", Cement Concrete Res., 32(8), 1313-1318. https://doi.org/10.1016/S0008-8846(02)00783-4.
- Liu, T., Huang, T., Ou, J., Xu, N., Li, Y., Ai, Y. and Xu, Z. (2023), "Modeling the load carrying capacity of corroded reinforced concrete compression bending members using explainable machine learning", Mater. Today Commun., 36, 106781. https://doi.org/10.1016/j.mtcomm.2023.106781.
- Liu, Y. and Weyers, R.E. (1998), "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures", ACI Mater. J., 95(6), 675-681. https://doi.org/10.14359/410.
- Maaddawy, T.E., Soudki, K. and Topper, T. (2005a), "Analytical model to predict nonlinear flexural behavior of corroded reinforced concrete beams", ACI Struct. J., 102(4), 550-559. https://doi.org/10.14359/14559.
- Maaddawy, T.E., Soudki, K. and Topper, T. (2005b), "Long-term performance of corrosion-damaged reinforced concrete beams", ACI Struct. J., 102(5), 649-659. https://doi.org/10.14359/14660.
- Oh, B.H., Cho, Y.G., W., Cha, S. and Chung, W.K. (1996), "A new method on the prediction of corrosion resistance of reinforced concrete using accelerated potentiometric corrosion method", J. Korea Concrete Inst., 8(5), 201-209.
- Oh, B.H., Kim, K.H. and Jang, B.S. (2009), "Critical corrosion amount to cause cracking of reinforced concrete structures", ACI Mater. J., 106(4), 333-339. https://doi.org/10.14359/56653.
- Oh, B.H., Kim, K.H., Jang, S.Y., Jiang, Y.R., and Jang, B.S. (2002), "Cracking behavior of reinforced concrete structures due to reinforcing steel corrosion", J. Korea Concrete Inst., 14(6), 851-863.
- Pantazopoulou, S.J. and Papoulia, K.D. (2001), "Modeling cover-cracking due to reinforcement corrosion in RC structures", J. Eng. Mech., 127(4), 342-351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342).
- Park, H.G., Choi, K.K. and Wight, J.K. (2006), "Strain-based shear strength model for slender beams without web reinforcement", ACI Struct. J., 103(6), 783-793. https://doi.org/10.14359/18228.
- Raoof, M. and Lin, Z. (1997), "Structural characteristics of RC beams with exposed main steel", Proc. Inst. Civil Eng. Struct. Build., 122(1), 35-51. https://doi.org/10.1680/istbu.1997.29166.
- Shang, F., An, X., Mishima, T. and Maekawa, K. (2011), "Three-dimensional nonlinear bond model incorporating transverse action in corroded RC members", J. Adv. Concrete Technol., 9(1), 89-102. https://doi.org/10.3151/jact.9.89.
- Shirkhani, A., Davarnia, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273.
- Toongoenthong, K. and Maekawa, K. (2004), "Interaction of pre-induced damages along main reinforcement and diagonal shear in RC members", J. Adv. Concrete Technol., 2(3), 431-443. https://doi.org/10.3151/jact.2.431.
- Ugural, A.C. and Fenster, S.K. (2003), Advanced Strength and Applied Elasticity, Prentice-Hall Canada, Toronto, ON, Canada.
- Vecchio, F.H. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J. Proc., 83(2), 219-231. https://doi.org/10.14359/10416.
- Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: Formulation", J. Struct. Eng., 126, 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070).
- Wang, X.H. and Liu, X.L. (2004a), "Modeling bond strength of corroded reinforcement without stirrups", Cement Concrete Res., 34(8), 1331-1339. https://doi.org/10.1016/j.cemconres.2003.12.028.
- Wang, X.H. and Liu, X.L. (2004b), "Modelling effects of corrosion on cover cracking and bond in reinforced concrete", Mag. Concrete Res., 56(4), 191-199. https://doi.org/10.1680/macr.56.4.191.36306.
- Wang, X.H. and Liu, X.L. (2010), "Simplified methodology for the evaluation of the residual strength of corroded reinforced concrete beams", J. Perform. Constr. Facil., 24(2), 108-119. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000083.
- Xu, Y.L. (1990), "Experimental study of anchorage properties for deformed bars in concrete", Ph.D. Dissertation, Tsinhua University, Baeijing, China.
- Xue, X. and Seki, H. (2010), "Influence of longitudinal bar corrosion on shear behavior of RC beams", J. Adv. Concrete Technol., 8(2), 145-156. https://doi.org/10.3151/jact.8.145.
- Zhang, W., Lee, D., Ogwu, I. and Okonkwo, M.M. (2021), "Nonlinear shear analysis of corroded RC beams considering bond mechanism", ACI Struct. J., 118(6), 47-61. https://doi.org/10.14359/51732996.