• Title/Summary/Keyword: anchorage detail

Search Result 16, Processing Time 0.024 seconds

Review of Anchorage Systems for Externally Bonded FRP Laminates

  • Grelle, Stephen V.;Sneed, Lesley H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.17-33
    • /
    • 2013
  • The most recent report by ACI Committee 440 on externally bonded fiber reinforced polymer (FRP) strengthening systems states that systems designed to mechanically anchor FRP should be studied in detail and substantiated by physical testing. To select and design an appropriate anchorage system for use in an FRP strengthening system, it is important that findings from previous research studies be known. This paper presents a comprehensive literature review of the performance of different mechanical anchorage systems used in FRP strengthening applications. Each anchorage system is discussed in terms of its purpose and performance. Advantages and disadvantages of each system are discussed, and areas in need of future research are explored.

Dual potential capacity model for predicting failure of RC beams damaged by corrosion of tensile reinforcement

  • Sun-Jin Han;Deuckhang Lee;Hyo-Eun Joo;Kang Su Kim
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.503-517
    • /
    • 2024
  • This study presents an analysis model to estimate the shear strength of a reinforced concrete (RC) member with corroded tensile reinforcements. The thick-walled cylinder theory was modified to fit the dual potential capacity model to reflect interdependent failure mechanisms, including the degradation effect of bonds in corroded tensile reinforcement. In the proposed model, it is considered that the shear failure of corroded RC members with no proper anchorage detail is primarily dominated by the flexural-bond mechanism, where insufficient bond strength is provided owing to corrosion damage. However, when tensile reinforcements are properly anchored in the end regions using end hooks or mechanical devices, it is assumed that the tied-arch action can be developed as a secondary shear transfer mechanism, even under severe corrosion damage. The proposed model was verified by comparison with shear test results of corroded RC members collected from the literature, and it appeared that the proposed model can estimate their shear strengths with a good level of accuracy, regardless of various anchorage details and corrosion rates in tensile reinforcements.

Clip-type Binding Implement Effect on Anchorage Behavior of 90-Degree End-Hooked Transverse Reinforcement in Reinforced Concrete Columns (클립형 연결장치로 결속된 90도 갈고리를 갖는 띠철근의 정착거동)

  • Park, Kyoung-Yeon;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.72-80
    • /
    • 2020
  • The purpose of this study is to secure the same or more structural performance and constructability for the details of hooks cross-constructed at 135 degrees used as external-ties standard detail in RC columns, therefore, to the purpose of improving constructability, the clip-type binding implement was suggested and A total of 28 pull-out specimens were prepared with the parameters of concrete compressive strength and clip-embeded length, clip installation location to examine the anchorage behavior of the clip-type binding implement. The experiment was carried out. The results of the experiment confirmed that the anchorage strength of the clip-type binding implement was higher than the details of hooks cross-constructed at 135-degree regardless of the diameter of tie and concrete strength, embeded clip length, clip installation. and The 90-degree end hook with clip-type binding implement was showed a similar an anchorage behavior of 135-degree end-hooked transverse reinforcement, consequently, The 90-degree end hooked with clip-type binding implement is evaluated to be the same anchorage behavior and performance as standard 135-degree end hook detail.

The Effect of Anchorage of Reinforcement in Slab-Column Connection (슬래브-기둥 접합부에서 전단보강체에 정창성능에 따른 영향)

  • Choi, Huyn-Ki;Kim, Jun-Seo;Lee, Moon-Sung;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.185-188
    • /
    • 2008
  • Flat plate system has structural weakness such as punching shear. Punching shear resistance can be increase by using a lager column section and effective depth, higer concrete compressive strength, and more flexural reinforcement ratio. But using a shear reinforcement is most economical, enable, workable solution in flat plate. The slab with thickness smaller than 250mm can not perform effectively due to insufficient development length of shear reinforcement in the slab. In case of proposed reinforcements, since the shear reinforcements were installed between the top bar and the bottom bar, shear elements generated slip failure before they reached yield. strength. effect of anchorage strength were effective anchorage length, concrete strength, diameter of shear element and anchorage detail. considering effect of slab thickness and concrete strength, formula of K factor propose in thin flat plate slab. by considering effect of anchorage length and concrete strength, strength of shear reinforcement will be computed correctly in thin flat plate slab.

  • PDF

Anchorage efficiency of mold-type anchorage for CFRP plates (CFRP판 긴장재를 위한 부착형 정착장치의 정착성능)

  • Park, Jong-Sup;Park, Young-Hwan;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.169-172
    • /
    • 2008
  • Carbon fiber reinforced polymer (CFRP) laminates can be used more efficiently in strengthening applications by applying prestress to the CFRP laminates. A key problem for prestressing with CFRP laminates is anchoring the laminates. These may include fracture to the CFRP laminates due to excessive gripping force or slippage of the CFRP laminates out of the anchorage zone caused by low friction between the anchor device and the lamiantes. The main objective of this study is the development of an applicative mold-type anchorage system for prestressed CFRP laminates through experimental study. The experimental parameters were the type of anchorage detail and the effect of surface treatment. The test results showed that the developed anchor assures 100% CFRP laminate strength.

  • PDF

Computer-Aided Drawing and Manufacturing of Rebars for RC Buildings (RC 건축물 철근 배근 상세도 및 가공도 작성 자동화)

  • Choi Dong-In;Kim Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.508-513
    • /
    • 2006
  • In construction of RC buildings, the quality of shop and detail drawings is very essential for the quality and safety of buildings. Nevertheless, most of thess works are left to site workers and the requirements about bar detailing such as anchorage and splice have been done without rational design and engineering. The purpose of this research is to develop a computer-aided drawing system of rebars for RC buildings. The system is based on an integrated structural design system, that is SDP. SDP manages an engineering database for structural design information. It provides all the information needed to draw rebar drawings. The drawing system consists of three modules, 1) Structual Plan Drawing System, 2) Shop Drawing System, and 3) Detail Drawing System. It is expected that not only the productivity of detail drawing works but also the quality and safety of buildings will be improved using the rebar drawing system developed in this research.

  • PDF

Design and Implementation of Rebar Detailing DB and System in RC Buildgings (철근배근상세 DB 및 도면작성 시스템 설계와 구현)

  • Choi, Dong-In;Park, Eui-Dong;Kim, Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.763-768
    • /
    • 2007
  • In construction of RC buildings, the quality of shop and detail drawings is very essential for the quality and safety of buildings, Nevertheless, most of thess works are left to site workers and the requirements about bar detailing such as anchorage and splice have been done without rational design and engineering. The purpose of this research is to develop a computer aided drawing system of rebars for RC buildings. The system is based on an integrated structural design system, that is SDP. SDP manages an engineering database for structural design information. It provides all the information needed to draw rebar drawings. The drawing system consists of three modules, 1) Structural Plan Drawing System, 2) Shop Drawing System, and 3) Detail Drawing System. It is expected that not only the productivity of detail drawing works but also the quality and safety of buildings will be improved using the rebar drawing system developed in this research.

  • PDF

Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

Damping of a taut cable with two attached high damping rubber dampers

  • Cu, Viet Hung;Han, Bing;Wang, Fang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1261-1278
    • /
    • 2015
  • Due to their low intrinsic damping, stay cables in cable-stayed bridges have often exhibited unanticipated and excessive vibrations which result in increasing maintenance frequency and disruption to normal operations of the entire bridges. Mitigation of undesired cable vibration can be achieved by attaching an external damping device near the anchorage. High Damping Rubber (HDR) dampers have many advantages such as compact size, better aesthetics, easy maintenance, temperature stability, and cost benefits; therefore, they have been widely used to increase cable damping. Although a single damper has been shown to reduce cable vibrations, it is not the most effective method due to geometric constraints. This paper proposes the use of two HDR dampers to improve effectiveness and robustness in suppressing cable vibration. Oscillation parameters of the cable-dampers system were investigated in detail by modeling the stay cable as a taut string and each HDR damper as complex-valued impedance and by using an analytical formulation of the complex eigenvalue problem. The problem of two HDR dampers arbitrarily located along a cable is solved and the solution is discussed. Asymptotic formulas to calculate the damping ratios of the cable with two HDR dampers installed near the anchorage(s) are proposed and compared with the exact solutions. Further, a design example is presented in order to justify the methodology. The results of this study show that when the two HDR dampers are installed close to each other on the same end of the cable, some interaction between the dampers leads to reduced damping ratio. When the dampers are on the opposite ends of the cable, they are effective in increasing damping ratio and can provide better vibration reduction to multiple modes.