DOI QR코드

DOI QR Code

A wind-induced snow redistribution study considering contact based on a coupling model of wind and discrete snow particles

  • Bin Wang (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Shengran Hao (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Shu Liu (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Duote Liu (School of Architecture and Civil Engineering, Chengdu University) ;
  • Yongle Li (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Haicui Wang (Faculty of Construction and Environment, The Hong Kong Polytechnic University)
  • Received : 2024.06.08
  • Accepted : 2024.09.05
  • Published : 2024.09.25

Abstract

This paper presents a numerical simulation method for snow drift that takes into account the cohesion effect of snow particles. The critical state of free collapse accumulation of idealized snow particles is used to indirectly infer the effect of interparticle interactions on snow transport and re-accumulation. With the help of the Hertz-Mindlin with JKR cohesion contact model, the particle angle of repose is calibrated with a number of contact parameters through numerical experiment. The surface energy for a given property of snow particles is determined using the observed snow angle of repose, and a continuous-discrete snow drift two-way coupled numerical model incorporating these optimized contact parameters is developed. The snow redistribution pattern on a stepped flat roof structure is simulated, and the results are found to be consistent with those of the field measured in terms of phenomena and general laws, verifying the achievability and effectiveness of the presented method. To eliminate the influence of environmental conditions, wind tunnel tests are also conducted, and it is found that the reconstructed depth and reaccumulated angle of snowdrift resulting from the numerical simulation are in closer agreement with the experimental results, further confirming the enhancement achieved by introducing the contact effect.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (51878579, 51908077, U21A20154) and the Natural Science Foundation of Sichuan Province (2022NSFSC0428).

References

  1. Al-Rubaye, S., Maguire, M. and Bean, B. (2022), "Design ground snow loads: Historical perspective and state of the art", J. Struct. Eng., 148(6), 03122001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003339.
  2. Anno, Y. (1984), "Requirements for modeling of a snowdrift", Cold Regions Sci. Technol., 8(3), 241-252. https://doi.org/10.1016/0165-232X(84)90055-7.
  3. Anno, Y. (1985), "Modelling a snowdrift by means of activated clay particles", Annals Glaciology, 6, 48-52. https://doi.org/10.3189/1985AoG6-1-48-52.
  4. Bang, B., Nielsen, A., Sundsbo, P.A. and Wiik, T. (1994), "Computer simulation of wind speed, wind pressure and snow accumulation around buildings (SNOW-SIM)", Energy Build., 21(3), 235-243. https://doi.org/10.1016/0378-7788(94)90039-6.
  5. Brown, R.D. (2010), "Analysis of snow cover variability and change in Quebec, 1948-2005", Hydrol. Processes, 24(14), 1929-1954. https://doi.org/10.1002/hyp.7565.
  6. Budd, W.F., Dingle, W.R.J. and Radok, U.W.E. (1966), "The Byrd snow drift project: outline and basic results", Studies Antarctic Meteorol., 9, 71-134. https://doi.org/10.1029/AR009p0071.
  7. Chen, X. and Yu, Z. (2023), "Development of Eulerian-Lagrangian simulation for snow transport in the presence of obstacles", Cold Regions Sci. Technol., 206, 103730 https://doi.org/10.1016/j.coldregions.2022.103730.
  8. Cheng, J., Dou, Y., Zhang, N., Li, Z. and Wang, Z. (2018), "A new method for predicting erosion damage of suddenly contracted pipe impacted by particle cluster via CFD-DEM", Materials, 11(10), 1858. https://doi.org/10.3390/ma11101858.
  9. Choi, Y.B., Kim, R.W. and Lee, I.B. (2024), "Numerical analysis of snow distribution on greenhouse roofs using CFD-DEM coupling method", Biosyst. Eng., 237, 196-213. https://doi.org/10.1016/j.biosystemseng.2023.09.018.
  10. Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
  11. Eidevag, T., Thomson, E.S., Kallin, D., Casselgren, J. and Rasmuson, A. (2022), "Angle of repose of snow: An experimental study on cohesive properties", Cold Regions Sci. Technol., 194, 103470. https://doi.org/10.1016/j.coldregions.2021.103470.
  12. Flerchinger, G.N. and Cooley, K.R. (2000), "A ten-year water balance of a mountainous semi-arid watershed", J. Hydrol., 237(1-2), 86-99. https://doi.org/10.1016/S0022-1694(00)00299-7.
  13. Groot Zwaaftink, C.D., Diebold, M., Horender, S., Overney, J., Lieberherr, G., Parlange, M.B. and Lehning, M. (2014), "Modelling small-scale drifting snow with a Lagrangian stochastic model based on large-eddy simulations", Bound. Lay. Meteorol., 153, 117-139. https://doi.org/10.1007/s10546-014-9934-2.
  14. Hertz, H. (1882), "On the fixed elastic body contact", J. fur die reine und angewandte Mathematik (Crelles Journal), 92, 156-171. https://doi.org/10.1515/crll.1882.92.156.
  15. Isyumov, N. and Mikitiuk, M. (1990), "Wind tunnel model tests of snow drifting on a two-level flat roof", J. Wind Eng. Ind. Aerod., 36, 893-904. https://doi.org/10.1016/0167-6105(90)90086-R.
  16. Iversen, J.D. (1980), "Drifting-snow similtude-transport-rate and roughness modeling", J. Glaciology, 26(94), 393-403. https://doi.org/10.3189/S0022143000010923.
  17. Iversen, J.D. (1981), "Comparison of wind-tunnel model and full-scale snow fence drifts", J. Wind Eng. Ind. Aerod., 8(3), 231-249. https://doi.org/10.1016/0167-6105(81)90023-4.
  18. Johnson, K.L., Kendall, K. and Roberts, A.A.D. (1971), "Surface energy and the contact of elastic solids", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 324(1558), 301-313. https://doi.org/10.1098/rspa.1971.0141.
  19. Kendall, K. (1994), "Adhesion: molecules and mechanics", Science, 263(5154), 1720-1725. https://doi.org/10.1126/science.263.5154.1720.
  20. Kind, R.J. (1976), "A critical examination of the requirements for model simulation of wind-induced erosion/deposition phenomena such as Snow drifting", Atmos. Environ., 10(3), 219-227. https://doi.org/10.1016/0004-6981(76)90094-9.
  21. Kind, R.J. and Murray, S.B. (1982), "Saltation flow measurements relating to modeling of snowdrifting", J. Wind Eng. Ind.l Aerod., 10(1), 89-102. https://doi.org/10.1016/0167-6105(82)90056-3.
  22. Kind, R.J. (1986), "Snow drifting: A review of modelling methods", Cold Regions Sci. Technol., 12, 217-228. https://doi.org/10.1016/0165-232X(86)90036-4.
  23. Kuroiwa, D., Mizuno, Y. and Takeuchi, M. (1967), "Micromeritical properties of snow", Phys. Snow Ice: Proceedings, 1(2), 751-772. http://hdl.handle.net/2115/20340.
  24. Kwok, K.C.S., Kim, D.H., Smedley, D.J. and Rohde, H.F. (1992), "Snowdrift around buildings for antarctic environment", J. Wind Eng. Ind. Aerod., 44(1-3), 2797-2808. https://doi.org/10.1016/0167-6105(92)90073-J.
  25. Li, J., Guala, M. and Hong, J. (2023), "Snow particle analyzer for simultaneous measurements of snow density and morphology", J. Geophys. Res. Atmos., 128(16), e2023JD038987. https://doi.org/10.1029/2023JD038987.
  26. Ligneau, C., Sovilla, B. and Gaume, J. (2022), "Numerical investigation of the effect of cohesion and ground friction on snow avalanches flow regimes", PloS one, 17(2), e0264033. https://doi.org/10.1371/journal.pone.0264033.
  27. Liu, D., Wang, B., Li, Y. and Liu, S. (2021), "A source term model for drifting snow based on the assumption of local equilibrium saltation", Cold Regions Sci. Technol., 181, 103175. https://doi.org/10.1016/j.coldregions.2020.103175.
  28. Liu, Z., Yu, Z., Zhu, F., Chen, X. and Zhou, Y. (2019), "An investigation of snow drifting on flat roofs: Wind tunnel tests and numerical simulations", Cold Regions Sci. Technol., 162, 74-87. https://doi.org/10.1016/j.coldregions.2019.03.016.
  29. Ma, W., Li, S., Zhou, X., Sun, Y., Cui, Z. and Tang, Z. (2023), "Field measurement study on snow accumulation process around a cube during snowdrift", Wind Struct., 37(1), 25-38. https://doi.org/10.12989/was.2023.37.1.025.
  30. Matsuzawa, M., Kajiya, Y. and Takeuchi, M. (2005), "The development and validation of a method to estimate visibility during snowfall and blowing snow", Cold Regions Sci. Technol., 41(2), 91-109. https://doi.org/10.1016/j.coldregions.2004.08.002.
  31. Mellor, M. (1977), "Engineering properties of snow", J. Glaciology, 19(81), 15-66. https://doi.org/10.3189/S002214300002921X.
  32. Mindlin, R.D. and Deresiewicz, H. (1953), "Elastic spheres in contact under varying oblique forces", J. Appl. Mech., 20(3), 327-344. https://doi.org/10.1115/1.4010702.
  33. Muller, C.R., Holland, D.J., Sederman, A.J., Scott, S.A., Dennis, J. S. and Gladden, L.F. (2008), "Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations", Powder Technol., 184(2), 241-253. https://doi.org/10.1016/j.powtec.2007.11.046.
  34. Naaim, M., Naaim-Bouvet, F. and Martinez, H. (1998), "Numerical simulation of drifting snow: erosion and deposition models", Annals Glaciol., 26, 191-196. https://doi.org/10.3189/1998AoG26-1-191-196.
  35. Naaim, M., Durand, Y., Eckert, N. and Chambon, G. (2013), "Dense avalanche friction coefficients: influence of physical properties of snow", J. Glaciology, 59(216), 771-782. https://doi.org/10.3189/2013JoG12J205.
  36. Nemoto, M. and Nishimura, K. (2004), "Numerical simulation of snow saltation and suspension in a turbulent boundary layer", J. Geophys. Res. Atmos., 109(D18). https://doi.org/10.1029/2004JD004657.
  37. Sakaguchi, H., Ozaki, E. and Igarashi, T. (1993), "Plugging of the flow of granular materials during the discharge from a silo", Int. J. Modern Phys. B, 7(09-10), 1949-1963. https://doi.org/10.1142/S0217979293002705.
  38. Scapozza, C. and Bartelt, P. (2003), "Triaxial tests on snow at low strain rate. Part II. Constitutive behavior", J. Glaciol., 49(164), 91-101. https://doi.org/10.3189/172756503781830890.
  39. Schmidt, R.A. (1982), "Properties of blowing snow", Rev. Geophys., 20(1), 39-44. https://doi.org/10.1029/RG020i001p00039.
  40. Shi, C., Li, Z. and Liu, Q. (2015), "Wind tunnel test method of snow drifting and observation research", Eng. Mech., 32, 15-19. https://doi.org/10.6052/j.issn.1000-4750.2014.05.S059.
  41. Supulver, K.D., Bridges, F.G. and Lin, D.N.C. (1995), "The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces", Icarus, 113(1), 188-199. https://doi.org/10.1006/icar.1995.1015.
  42. Tominaga, Y., Okaze, T. and Mochida, A. (2011), "CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach", Build. Environ., 46(4), 899-910. https://doi.org/10.1016/j.buildenv.2010.10.020.
  43. Tsuchiya, M., Tomabechi, T., Hongo, T. and Ueda, H. (2002), "Wind effects on snowdrift on stepped flat roofs", J. Wind Eng. Ind. Aerod., 90(12-15), 1881-1892. https://doi.org/10.1016/S0167-6105(02)00295-7.
  44. Tsuji, Y., Tanaka, T. and Ishida, T. (1992), "Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe", Powder Technol., 71(3), 239-250. https://doi.org/10.1016/0032-5910(92)88030-L.
  45. Uematsu, T., Nakata, T., Takeuchi, K., Arisawa, Y. and Kaneda, Y. (1991), "Three-dimensional numerical simulation of snowdrift", Cold Regions Sci. Technol., 20(1), 65-73. https://doi.org/10.1016/0165-232X(91)90057-N.
  46. Wang, J., Liu, H., Xu, D., Chen, Z. and Ma, K. (2019), "Modeling snowdrift on roofs using Immersed Boundary Method and wind tunnel test", Build. Environ., 160, 106208. https://doi.org/10.1016/j.buildenv.2019.106208.
  47. Wang, W., Liao, H. and Li, M. (2014), "Wind tunnel test on wind-induced roof snow distribution", J. Build. Struct., 05, 135-141. https://doi.org/10.14006/j.jzjgxb.2014.05.001.
  48. Willibald, C., Lowe, H., Theile, T., Dual, J. and Schneebeli, M. (2020), "Angle of repose experiments with snow: role of grain shape and cohesion", J. Glaciol., 66(258), 658-666. https://doi.org/10.1017/jog.2020.36.
  49. Yu, Z., Zhu, F., Cao, R., Chen, X., Zhao, L. and Zhao, S. (2019), "Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs", Wind Struct., 28(1), 31-47. https://doi.org/10.12989/was.2019.28.1.031.
  50. Zhang, B., Zhang, Q., Fan, F. and Lehning, M. (2021), "Similarity conditions and cube model tests of snow drift and precipitation preferential deposition patterns", J. Wind Eng. Ind. Aerod., 215, 104694. https://doi.org/10.1016/j.jweia.2021.104694.
  51. Zhang, G., Zhang, Q., Mo, H., Li, R., Liu, M. and Fan, F. (2022), "Experimental investigation of snow accumulations on two-span single-pitched roofs based on a new similarity criterion", Front. Earth Sci., 10, 785010. https://doi.org/10.3389/feart.2022.785010.
  52. Zhang, J. and Huang, N. (2008), "Simulation of snow drift and the effects of snow particles on wind", Modelling Simulation Eng., 2008, 408075. https://doi.org/10.1155/2008/408075.
  53. Zhao, L., Yu, Z., Zhu, F., Qi, X. and Zhao, S. (2016), "CFD-DEM modeling of snowdrifts on stepped flat roofs", Wind Struct., 23(6), 523-542. https://doi.org/10.12989/was.2016.23.6.523.
  54. Zhou, X., Hu, J. and Gu, M. (2014), "Wind tunnel test of snow loads on a stepped flat roof using different granular materials", Nat. Haz., 74(3), 1629-1648. https://doi.org/10.1007/s11069-014-1296-z.