Acknowledgement
This work was supported by the National Natural Science Foundation of China (51878579, 51908077, U21A20154) and the Natural Science Foundation of Sichuan Province (2022NSFSC0428).
References
- Al-Rubaye, S., Maguire, M. and Bean, B. (2022), "Design ground snow loads: Historical perspective and state of the art", J. Struct. Eng., 148(6), 03122001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003339.
- Anno, Y. (1984), "Requirements for modeling of a snowdrift", Cold Regions Sci. Technol., 8(3), 241-252. https://doi.org/10.1016/0165-232X(84)90055-7.
- Anno, Y. (1985), "Modelling a snowdrift by means of activated clay particles", Annals Glaciology, 6, 48-52. https://doi.org/10.3189/1985AoG6-1-48-52.
- Bang, B., Nielsen, A., Sundsbo, P.A. and Wiik, T. (1994), "Computer simulation of wind speed, wind pressure and snow accumulation around buildings (SNOW-SIM)", Energy Build., 21(3), 235-243. https://doi.org/10.1016/0378-7788(94)90039-6.
- Brown, R.D. (2010), "Analysis of snow cover variability and change in Quebec, 1948-2005", Hydrol. Processes, 24(14), 1929-1954. https://doi.org/10.1002/hyp.7565.
- Budd, W.F., Dingle, W.R.J. and Radok, U.W.E. (1966), "The Byrd snow drift project: outline and basic results", Studies Antarctic Meteorol., 9, 71-134. https://doi.org/10.1029/AR009p0071.
- Chen, X. and Yu, Z. (2023), "Development of Eulerian-Lagrangian simulation for snow transport in the presence of obstacles", Cold Regions Sci. Technol., 206, 103730 https://doi.org/10.1016/j.coldregions.2022.103730.
- Cheng, J., Dou, Y., Zhang, N., Li, Z. and Wang, Z. (2018), "A new method for predicting erosion damage of suddenly contracted pipe impacted by particle cluster via CFD-DEM", Materials, 11(10), 1858. https://doi.org/10.3390/ma11101858.
- Choi, Y.B., Kim, R.W. and Lee, I.B. (2024), "Numerical analysis of snow distribution on greenhouse roofs using CFD-DEM coupling method", Biosyst. Eng., 237, 196-213. https://doi.org/10.1016/j.biosystemseng.2023.09.018.
- Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
- Eidevag, T., Thomson, E.S., Kallin, D., Casselgren, J. and Rasmuson, A. (2022), "Angle of repose of snow: An experimental study on cohesive properties", Cold Regions Sci. Technol., 194, 103470. https://doi.org/10.1016/j.coldregions.2021.103470.
- Flerchinger, G.N. and Cooley, K.R. (2000), "A ten-year water balance of a mountainous semi-arid watershed", J. Hydrol., 237(1-2), 86-99. https://doi.org/10.1016/S0022-1694(00)00299-7.
- Groot Zwaaftink, C.D., Diebold, M., Horender, S., Overney, J., Lieberherr, G., Parlange, M.B. and Lehning, M. (2014), "Modelling small-scale drifting snow with a Lagrangian stochastic model based on large-eddy simulations", Bound. Lay. Meteorol., 153, 117-139. https://doi.org/10.1007/s10546-014-9934-2.
- Hertz, H. (1882), "On the fixed elastic body contact", J. fur die reine und angewandte Mathematik (Crelles Journal), 92, 156-171. https://doi.org/10.1515/crll.1882.92.156.
- Isyumov, N. and Mikitiuk, M. (1990), "Wind tunnel model tests of snow drifting on a two-level flat roof", J. Wind Eng. Ind. Aerod., 36, 893-904. https://doi.org/10.1016/0167-6105(90)90086-R.
- Iversen, J.D. (1980), "Drifting-snow similtude-transport-rate and roughness modeling", J. Glaciology, 26(94), 393-403. https://doi.org/10.3189/S0022143000010923.
- Iversen, J.D. (1981), "Comparison of wind-tunnel model and full-scale snow fence drifts", J. Wind Eng. Ind. Aerod., 8(3), 231-249. https://doi.org/10.1016/0167-6105(81)90023-4.
- Johnson, K.L., Kendall, K. and Roberts, A.A.D. (1971), "Surface energy and the contact of elastic solids", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 324(1558), 301-313. https://doi.org/10.1098/rspa.1971.0141.
- Kendall, K. (1994), "Adhesion: molecules and mechanics", Science, 263(5154), 1720-1725. https://doi.org/10.1126/science.263.5154.1720.
- Kind, R.J. (1976), "A critical examination of the requirements for model simulation of wind-induced erosion/deposition phenomena such as Snow drifting", Atmos. Environ., 10(3), 219-227. https://doi.org/10.1016/0004-6981(76)90094-9.
- Kind, R.J. and Murray, S.B. (1982), "Saltation flow measurements relating to modeling of snowdrifting", J. Wind Eng. Ind.l Aerod., 10(1), 89-102. https://doi.org/10.1016/0167-6105(82)90056-3.
- Kind, R.J. (1986), "Snow drifting: A review of modelling methods", Cold Regions Sci. Technol., 12, 217-228. https://doi.org/10.1016/0165-232X(86)90036-4.
- Kuroiwa, D., Mizuno, Y. and Takeuchi, M. (1967), "Micromeritical properties of snow", Phys. Snow Ice: Proceedings, 1(2), 751-772. http://hdl.handle.net/2115/20340.
- Kwok, K.C.S., Kim, D.H., Smedley, D.J. and Rohde, H.F. (1992), "Snowdrift around buildings for antarctic environment", J. Wind Eng. Ind. Aerod., 44(1-3), 2797-2808. https://doi.org/10.1016/0167-6105(92)90073-J.
- Li, J., Guala, M. and Hong, J. (2023), "Snow particle analyzer for simultaneous measurements of snow density and morphology", J. Geophys. Res. Atmos., 128(16), e2023JD038987. https://doi.org/10.1029/2023JD038987.
- Ligneau, C., Sovilla, B. and Gaume, J. (2022), "Numerical investigation of the effect of cohesion and ground friction on snow avalanches flow regimes", PloS one, 17(2), e0264033. https://doi.org/10.1371/journal.pone.0264033.
- Liu, D., Wang, B., Li, Y. and Liu, S. (2021), "A source term model for drifting snow based on the assumption of local equilibrium saltation", Cold Regions Sci. Technol., 181, 103175. https://doi.org/10.1016/j.coldregions.2020.103175.
- Liu, Z., Yu, Z., Zhu, F., Chen, X. and Zhou, Y. (2019), "An investigation of snow drifting on flat roofs: Wind tunnel tests and numerical simulations", Cold Regions Sci. Technol., 162, 74-87. https://doi.org/10.1016/j.coldregions.2019.03.016.
- Ma, W., Li, S., Zhou, X., Sun, Y., Cui, Z. and Tang, Z. (2023), "Field measurement study on snow accumulation process around a cube during snowdrift", Wind Struct., 37(1), 25-38. https://doi.org/10.12989/was.2023.37.1.025.
- Matsuzawa, M., Kajiya, Y. and Takeuchi, M. (2005), "The development and validation of a method to estimate visibility during snowfall and blowing snow", Cold Regions Sci. Technol., 41(2), 91-109. https://doi.org/10.1016/j.coldregions.2004.08.002.
- Mellor, M. (1977), "Engineering properties of snow", J. Glaciology, 19(81), 15-66. https://doi.org/10.3189/S002214300002921X.
- Mindlin, R.D. and Deresiewicz, H. (1953), "Elastic spheres in contact under varying oblique forces", J. Appl. Mech., 20(3), 327-344. https://doi.org/10.1115/1.4010702.
- Muller, C.R., Holland, D.J., Sederman, A.J., Scott, S.A., Dennis, J. S. and Gladden, L.F. (2008), "Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations", Powder Technol., 184(2), 241-253. https://doi.org/10.1016/j.powtec.2007.11.046.
- Naaim, M., Naaim-Bouvet, F. and Martinez, H. (1998), "Numerical simulation of drifting snow: erosion and deposition models", Annals Glaciol., 26, 191-196. https://doi.org/10.3189/1998AoG26-1-191-196.
- Naaim, M., Durand, Y., Eckert, N. and Chambon, G. (2013), "Dense avalanche friction coefficients: influence of physical properties of snow", J. Glaciology, 59(216), 771-782. https://doi.org/10.3189/2013JoG12J205.
- Nemoto, M. and Nishimura, K. (2004), "Numerical simulation of snow saltation and suspension in a turbulent boundary layer", J. Geophys. Res. Atmos., 109(D18). https://doi.org/10.1029/2004JD004657.
- Sakaguchi, H., Ozaki, E. and Igarashi, T. (1993), "Plugging of the flow of granular materials during the discharge from a silo", Int. J. Modern Phys. B, 7(09-10), 1949-1963. https://doi.org/10.1142/S0217979293002705.
- Scapozza, C. and Bartelt, P. (2003), "Triaxial tests on snow at low strain rate. Part II. Constitutive behavior", J. Glaciol., 49(164), 91-101. https://doi.org/10.3189/172756503781830890.
- Schmidt, R.A. (1982), "Properties of blowing snow", Rev. Geophys., 20(1), 39-44. https://doi.org/10.1029/RG020i001p00039.
- Shi, C., Li, Z. and Liu, Q. (2015), "Wind tunnel test method of snow drifting and observation research", Eng. Mech., 32, 15-19. https://doi.org/10.6052/j.issn.1000-4750.2014.05.S059.
- Supulver, K.D., Bridges, F.G. and Lin, D.N.C. (1995), "The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces", Icarus, 113(1), 188-199. https://doi.org/10.1006/icar.1995.1015.
- Tominaga, Y., Okaze, T. and Mochida, A. (2011), "CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach", Build. Environ., 46(4), 899-910. https://doi.org/10.1016/j.buildenv.2010.10.020.
- Tsuchiya, M., Tomabechi, T., Hongo, T. and Ueda, H. (2002), "Wind effects on snowdrift on stepped flat roofs", J. Wind Eng. Ind. Aerod., 90(12-15), 1881-1892. https://doi.org/10.1016/S0167-6105(02)00295-7.
- Tsuji, Y., Tanaka, T. and Ishida, T. (1992), "Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe", Powder Technol., 71(3), 239-250. https://doi.org/10.1016/0032-5910(92)88030-L.
- Uematsu, T., Nakata, T., Takeuchi, K., Arisawa, Y. and Kaneda, Y. (1991), "Three-dimensional numerical simulation of snowdrift", Cold Regions Sci. Technol., 20(1), 65-73. https://doi.org/10.1016/0165-232X(91)90057-N.
- Wang, J., Liu, H., Xu, D., Chen, Z. and Ma, K. (2019), "Modeling snowdrift on roofs using Immersed Boundary Method and wind tunnel test", Build. Environ., 160, 106208. https://doi.org/10.1016/j.buildenv.2019.106208.
- Wang, W., Liao, H. and Li, M. (2014), "Wind tunnel test on wind-induced roof snow distribution", J. Build. Struct., 05, 135-141. https://doi.org/10.14006/j.jzjgxb.2014.05.001.
- Willibald, C., Lowe, H., Theile, T., Dual, J. and Schneebeli, M. (2020), "Angle of repose experiments with snow: role of grain shape and cohesion", J. Glaciol., 66(258), 658-666. https://doi.org/10.1017/jog.2020.36.
- Yu, Z., Zhu, F., Cao, R., Chen, X., Zhao, L. and Zhao, S. (2019), "Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs", Wind Struct., 28(1), 31-47. https://doi.org/10.12989/was.2019.28.1.031.
- Zhang, B., Zhang, Q., Fan, F. and Lehning, M. (2021), "Similarity conditions and cube model tests of snow drift and precipitation preferential deposition patterns", J. Wind Eng. Ind. Aerod., 215, 104694. https://doi.org/10.1016/j.jweia.2021.104694.
- Zhang, G., Zhang, Q., Mo, H., Li, R., Liu, M. and Fan, F. (2022), "Experimental investigation of snow accumulations on two-span single-pitched roofs based on a new similarity criterion", Front. Earth Sci., 10, 785010. https://doi.org/10.3389/feart.2022.785010.
- Zhang, J. and Huang, N. (2008), "Simulation of snow drift and the effects of snow particles on wind", Modelling Simulation Eng., 2008, 408075. https://doi.org/10.1155/2008/408075.
- Zhao, L., Yu, Z., Zhu, F., Qi, X. and Zhao, S. (2016), "CFD-DEM modeling of snowdrifts on stepped flat roofs", Wind Struct., 23(6), 523-542. https://doi.org/10.12989/was.2016.23.6.523.
- Zhou, X., Hu, J. and Gu, M. (2014), "Wind tunnel test of snow loads on a stepped flat roof using different granular materials", Nat. Haz., 74(3), 1629-1648. https://doi.org/10.1007/s11069-014-1296-z.