DOI QR코드

DOI QR Code

Experimental damage identification of cantilever beam using double stage extended improved particle swarm optimization

  • 투고 : 2023.11.27
  • 심사 : 2024.08.27
  • 발행 : 2024.09.25

초록

This article proposes a new methodology for identifying beam damage based on changes in modal parameters using the Double Stage Extended Improved Particle Swarm Optimization (DSEIPSO) technique. A finite element code is first developed in MATLAB to model an ideal beam structure based on classical beam theory. An experimental study is then performed on a laboratory-scale beam, and the modal parameters are extracted. An improved version of the PSO algorithm is employed to update the finite element model based on the experimental measurements, representing the real structure and forming the baseline model for all further damage detection. Subsequently, structural damages are introduced in the experimental beam. The DSEIPSO algorithm is then utilized to optimize the objective function, formulated using the obtained mode shapes and the natural frequencies from the damaged and undamaged beams to identify the exact location and extent of the damage. Experimentally obtained resultsfrom a simple cantilever beam are used to validate the effectiveness of the proposed method. The illustrated results show the effectiveness of the proposed method for structural damage detection in the SHM field.

키워드

참고문헌

  1. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. http://doi.org/10.12989/cac.2019.59.1.345.
  2. Cancelli, A., Laflamme, S., Alipour, A., Sritharan, S. and Ubertini, F. (2020), "Vibration-based damage localization and quantification in a pretensioned concrete girder using stochastic subspace identification and particle swarm model updating", Struct. Hlth. Monit., 19(2), 587-605. https://doi.org/10.1177/1475921718820015.
  3. Chou, J.H. and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Struct., 79(14), 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X.
  4. Debing, Z., Hui, C. and Weifeng, N. (2021), "Two-stage damage detection of beam structure based on improved PSO algorithm", IOP Conf. Ser.: Earth Environ. Sci., 634(1), 12060. https://doi.org/10.1088/1755-1315/634/1/012060.
  5. Ding, Z.H., Huang, M. and Lu, Z.R. (2016), "Structural damage detection using artificial bee colony algorithm with hybrid search strategy", Swarm Evol. Comput., 28, 1-13. https://doi.org/10.1016/j.swevo.2015.10.010.
  6. Ghannadi, P. and Kourehli, S.S. (2019), "Data-driven method of damage detection using sparse sensors installation by SEREPa", J. Civil Struct. Hlth. Monit., 9, 459-475. https://doi.org/10.1007/s13349-019-00345-8.
  7. Ghannadi, P. and Kourehli, S.S. (2020), "Multiverse optimizer for structural damage detection: Numerical study and experimental validation", Struct. Des. Tall Spec. Build., 29(13), e1777. https://doi.org/10.1002/tal.1777.
  8. Ghannadi, P. and Kourehli, S.S. (2022), "Efficiency of the slime mold algorithm for damage detection of large-scale structures", Struct. Des. Tall Spec. Build., 31(14), e1967. https://doi.org/10.1002/tal.1967.
  9. Ghannadi, P., Khatir, S., Kourehli, S.S., Nguyen, A., Boutchicha, D. and Wahab, M.A. (2023), "Finite element model updating and damage identification using semi-rigidly connected frame element and optimization procedure: An experimental validation", Struct., 50, 1173-1190. https://doi.org/10.1016/j.istruc.2023.02.008.
  10. Ghannadi, P., Kourehli, S.S. and Mirjalili, S. (2022), "The application of PSO in structural damage detection: An analysis of the previously released publications (2005-2020)", Frattura ed Integrita Strutturale, 16(62), 460-489. https://doi.org/10.3221/IGF-ESIS.62.32.
  11. Ghannadi, P., Kourehli, S.S., Noori, M. and Altabey, W.A. (2020), "Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes", Adv. Struct. Eng., 23(13), 2850-2865. https://doi.org/10.1177/1369433220921000.
  12. Gillich, G.R. and Praisach, Z.I. (2014), "Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis", Signal Pr., 96, 29-44. https://doi.org/10.1016/j.sigpro.2013.04.027.
  13. Gomes, H.M. and Silva, N.R.S. (2008), "Some comparisons for damage detection on structures using genetic algorithms and modal sensitivity method", Appl Math. Model., 32(11), 2216-2232. https://doi.org/10.1016/j.apm.2007.07.002.
  14. Guo, H.Y. and Li, Z.L. (2014), "Structural damage identification based on evidence fusion and improved particle swarm optimization", J. Vib. Control, 20(9), 1279-1292. https://doi.org/10.1177/1077546312469422.
  15. Guyan, R.J. (1965), "Reduction of stiffness and mass matrices", AIAA J., 3(2), 380-380. https://doi.org/10.2514/3.2874.
  16. Hassan, R., Cohanim, B., De Weck, O. and Venter, G. (2005), "A comparison of particle swarm optimization and the genetic algorithm", 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1897. https://doi.org/10.2514/6.2005-1897.
  17. Hoseini Vaez, S.R. and Fallah, N. (2017), "Damage detection of thin plates using GA-PSO algorithm based on modal data", Arab. J. Sci. Eng., 42, 1251-1263. https://doi.org/10.1007/s13369-016-2398-6.
  18. Jafarkhani, R. and Masri, S.F. (2011), "Finite element model updating using evolutionary strategy for damage detection", Comput.-Aid. Civil Infrastr. Eng., 26(3), 207-224. https://doi.org/10.1111/j.1467-8667.2010.00687.x.
  19. Kang, F., Li, J.J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050.
  20. Li, J., Law, S.S. and Ding, Y. (2013), "Damage detection of a substructure based on response reconstruction in frequency domain", Key Eng. Mater., 569, 823-830. https://doi.org/10.4028/www.scientific.net/KEM.569-570.823.
  21. Luh, G.C., Lin, C.Y. and Lin, Y.S. (2011), "A binary particle swarm optimization for continuum structural topology optimization", Appl. Soft Comput., 11(2), 2833-2844. https://doi.org/10.1016/j.asoc.2010.11.013.
  22. Majumdar, A., Maiti, D.K. and Maity, D. (2012), "Damage assessment of truss structures from changes in natural frequencies using ant colony optimization", Appl. Math. Comput., 218(19), 9759-9772. https://doi.org/10.1016/j.amc.2012.03.031.
  23. Manoach, E., Warminski, J., Kloda, L. and Teter, A. (2017), "Numerical and experimental studies on vibration based methods for detection of damage in composite beams", Compos. Struct., 170, 26-39. https://doi.org/10.1016/j.compstruct.2017.03.005.
  24. Mottershead, J.E. and Friswell, M.I. (1993), "Model updating in structural dynamics: A survey", J. Sound Vib., 167(2), 347-375. https://doi.org/10.1006/jsvi.1993.1340.
  25. Nanda, B., Maity, D. and Maiti, D.K. (2012), "Vibration based structural damage detection technique using particle swarm optimization with incremental swarm size", Int. J. Aeronaut. Space Sci., 13(3), 323-331. https://doi.org/10.5139/IJASS.2012.13.3.323.
  26. Nanda, B., Maity, D. and Maiti, D.K. (2014), "Damage assessment from curvature mode shape using unified particle swarm optimization", Struct. Eng. Mech., 52(2), 307-322. http://doi.org/10.12989/sem.2014.52.2.307.
  27. Nashta, M.R., Taghipour, R., Bozorgnasab, M. and Mirgolbabaei, H. (2022), "A novel method for identification of damage location in frame structures using a modal parameters-based indicator", Arch. Civil Eng., 633-643. https://doi.org/10.24425/ace.2022.141907.
  28. Perera, R., Ruiz, A. and Manzano, C. (2007), "An evolutionary multiobjective framework for structural damage localization and quantification", Eng. Struct., 29(10), 2540-2550. https://doi.org/10.1016/j.engstruct.2007.01.003.
  29. Ricles, J.M. and Kosmatka, J.B. (1992), "Damage detection in elastic structures using vibratory residual forces and weighted sensitivity", AIAA J., 30(9), 2310-2316. https://doi.org/10.2514/3.11219.
  30. Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: A review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6.
  31. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., ... & Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Meth. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
  32. Seyedpoor, S. (2012), "A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization", Int. J. Nonlin. Mech., 47(1), 1-8. https://doi.org/10.1016/j.ijnonlinmec.2011.07.011.
  33. Shi, Y. (2001), "Particle swarm optimization: developments, applications and resources", Proceedings of the 2001 Congress on Evolutionary Computation, IEEE Cat. No. 01TH8546, 1, 81-86. https://doi.org/10.1109/CEC.2001.934374.
  34. Wan, Z.Y., Zhu, H.P. and Yu, L. (2006), "Structural damage detection based on an improved PSO algorithm", Eng. Mech., 23(S1), 73-78.
  35. Wei, Z., Liu, J. and Lu, Z. (2018), "Structural damage detection using improved particle swarm optimization", Invers. Prob. Sci. Eng., 26(6), 792-810. https://doi.org/10.1080/17415977.2017.1347168.
  36. Yu, L. and Xu, P. (2011), "Structural health monitoring based on continuous ACO method", Microelectr. Reliab., 51(2), 270-278. https://doi.org/10.1016/j.microrel.2010.09.011.
  37. Zenzen, R., Belaidi, I., Khatir, S. and Wahab, M.A. (2018), "A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm", Comptes Rendus. Mecanique, 346(12), 1253-1266. https://doi.org/10.1016/j.crme.2018.09.003.