DOI QR코드

DOI QR Code

The Effects of Acupuncture on Alleviating Pain and Depression and Modulating Brain Neural Activity

침 치료의 통증 및 우울증 개선 효과와 뇌신경 반응성 조절 기전 연구

  • Keun Hyang Eom (Department of Meridian & Acupoint, College of Korean Medicine, Daejeon University) ;
  • Seul-Ki Won (Department of Meridian & Acupoint, College of Korean Medicine, Daejeon University) ;
  • Ji-Hye Song (Department of Meridian & Acupoint, College of Korean Medicine, Daejeon University) ;
  • Ji-Yeun Park (Department of Meridian & Acupoint, College of Korean Medicine, Daejeon University)
  • 엄근향 (대전대학교 한의과대학 경락경혈학교실) ;
  • 원슬기 (대전대학교 한의과대학 경락경혈학교실) ;
  • 송지혜 (대전대학교 한의과대학 경락경혈학교실) ;
  • 박지연 (대전대학교 한의과대학 경락경혈학교실)
  • Received : 2024.08.02
  • Accepted : 2024.09.11
  • Published : 2024.09.27

Abstract

Objectives : We aimed to identify the effects of acupuncture treatment on alleviating pain and depression and modulating brain neural activity in the neuropathic pain and depression comorbidity mouse model (PDCM). Methods : We performed partial sciatic nerve ligation on the right hind paw of mice to induce neuropathic pain and injected reserpine (2 mg/kg, intraperitoneal) for 10 days from the day of the surgery to induce pain and depression. Acupuncture treatment was performed for 10 days at the following locations: 1) ST36 and SP6 (Joksamni and Sameumgyo; JS), 2) KI1 and HT7 (Yongcheon and Sinmun; YS), 3) LR1, PC9, KI10, and PC3 (Pericardium tonification; PT), or 4) LR1, HT9, KI10, and HT3 (Heart tonification; HT). Pain-like behavior was measured using the von Frey test and depressive-like behavior was assessed using the open field test. Then, the c-Fos expression was analyzed in the brain regions of neocortex, striatum, hypothalamus, hippocampus, midbrain, and medulla to examine brain neural activity. Results : In PDCM, pain-like behavior was alleviated by acupuncture treatment on the JS, YS, PT, and HT, and depressive-like behavior was improved by acupuncture treatment on the JS and YS. JS and YS were derived as an optimized acupoint combination for improving neuropathic pain and depression comorbidity. Brain neural activities in the neocortex (infralimbic cortex) and hypothalamus (paraventricular hypothalamic nucleus; PVN) were commonly altered by both JS and YS acupuncture treatments. In addition, neural activities in the neocortex (prelimbic cortex; PrL) and midbrain (substantia nigra, lateral part of the dorsal raphe nucleus) were altered exclusively by JS acupuncture treatment, while changes in the area 2 of the anterior cingulate cortex and the cornu ammonis 3 of the hippocampus were specific to YS acupuncture treatment. Brain neural activity in the PrL and PVN regions was significantly correlated with changes in pain behavior. Conclusions : Both JS and YS acupuncture treatments alleviated pain and depressive-like behaviors, which were associated with modulation of neural activities in the neocortex, hypothalamus, hippocampus, and midbrain.

Keywords

Acknowledgement

본 연구의 동물실험 진행 및 결과 분석에 도움을 준 이다솜 선생님과 구지연, 정채희, 오윤상 학생에게 감사의 인사를 전합니다.

References

  1. van Velzen M, Dahan A, Niesters M. Neuropathic pain: challenges and opportunities. Front Pain Res. 2020 ; 1 : 1. https://doi.org/10.3389/fpain.2020.00001
  2. Roughan WH, Campos AI, Garcia-Marin LM, Cuellar-Partida G, Lupton MK, Hickie IB, et al. Comorbid chronic pain and depression: shared risk factors and differential antidepressant effectiveness. Front Psychiatry. 2021 ; 12 : 643609. https://doi.org/10.3389/fpsyt.2021.643609
  3. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. A classification of chronic pain for ICD-11. Pain. 2015 ; 156(6) : 1003-7. https://doi.org/10.1097/j.pain.0000000000000160
  4. Arnow BA, Hunkeler EM, Blasey CM, Lee J, Constantino MJ, Fireman B, et al. Comorbid depression, chronic pain, and disability in primary care. Psychosom Med. 2006 ; 68(2) : 262-8. https://doi.org/10.1097/01.psy.0000204851.15499.fc
  5. Vieira WF, Coelho DRA, Litwiler ST, McEachern KM, Clancy JA, Morales-Quezada L, et al. Neuropathic pain, mood, and stressrelated disorders: A literature review of comorbidity and copathogenesis. Neurosci Biobehav Rev. 2024 : 161 : 105673. https://doi.org/10.1016/j.neubiorev.2024.105673
  6. de Heer EW, Gerrits MMJG, Beekman ATF, Dekker J, van Marwijk HWJ, de Waal MWM, et al. The association of depression and anxiety with pain: a study from NESDA. PLoS One. 2014 ; 9(10) : e106907. https://doi.org/10.1371/journal.pone.0106907
  7. Kriesche D, Woll CFJ, Tschentscher N, Engel RR, Karch S. Neurocognitive deficits in depression: a systematic review of cognitive impairment in the acute and remitted state. Eur Arch Psychiatry Clin Neurosci. 2023 ; 273(5) : 1105-28. https://doi.org/10.1007/s00406-022-01479-5
  8. Linton SJ, Shaw WS. Impact of psychological factors in the experience of pain. Phys Ther. 2011 ; 91(5) : 700-11. https://doi.org/10.2522/ptj.20100330
  9. Maneeton N, Maneeton B, Srisurapanont M. Prevalence and predictors of pain in patients with major depressive disorder. Asian J Psychiatr. 2013 ; 6(4) : 288-91. https://doi.org/ 10.1016/j.ajp.2012.12.004
  10. Kummer KK, Mitric M, Kalpachidou T, Kress M. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. Int J Mol Sci. 2020 ; 21(10) : 3440. https://doi.org/10.3390/ijms21103440
  11. Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: common links between chronic pain and depression. Neurosci Biobehav Rev. 2015 ; 53 : 139-59. https://doi.org/10.1016/j.neubiorev.2015.03.014
  12. Chatterjee I, Baumgartner L, Cho M. Detection of brain regions responsible for chronic pain in osteoarthritis: an fMRI-based neuroimaging study using deep learning. Front Neurol. 2023 ; 14 : 1195923. https://doi.org/10.3389/fneur.2023.1195923
  13. Jo KB, Lee YJ, Lee IG, Lee SC, Park JY, Ahn RS. Association of pain intensity, pain-related disability, and depression with hypothalamus-pituitary-adrenal axis function in female patients with chronic temporomandibular disorders. Psychoneuroendocrinology. 2016 ; 69 : 106-15. https://doi.org/10.1016/j.psyneuen.2016.03.017
  14. Song JH, Kook HJ, Park BJ, Kim SY, Park JY. A review on the pain and depression comorbidity animal models. Korean J Acupunct. 2021 ; 38(2) : 75-99. https://doi.org/10.1016/j.psyneuen.2016.03.017
  15. Hsu HC, Hsieh CL, Lee KT, Lin YW. Electroacupuncture reduces fibromyalgia pain by downregulating the TRPV1-pERK signalling pathway in the mouse brain. Acupunct Med. 2020 ; 38(2) : 101-8. https://doi.org/10.1136/acupmed-2017-011395
  16. Jang JH, Song EM, Do YH, Ahn S, Oh JY, Hwang TY, et al. Acupuncture alleviates chronic pain and comorbid conditions in a mouse model of neuropathic pain: the involvement of DNA methylation in the prefrontal cortex. Pain. 2021 ; 162(2) : 514-30. https://doi.org/10.1097/j.pain.0000000000002031
  17. Seo SY, Moon JY, Kang SY, Kwon OS, Kwon S, Bang SK, et al. An estradiol-independent BDNF-NPY cascade is involved in the antidepressant effect of mechanical acupuncture instruments in ovariectomized rats. Sci Rep. 2018 ; 8(1) : 5849. https://doi.org/10.1038/s41598-018-23824-2
  18. Lee MJ, Ryu JS, Won SK, Namgung U, Jung J, Lee SM, et al. Effects of acupuncture on chronic stress-Induced depression-like behavior and its central neural mechanism. Front Psychol. 2019 ; 10 : 1353. https://doi.org/10.3389/fpsyg.2019.01353
  19. Jung J, Lee SM, Lee MJ, Ryu JS, Song JH, Lee JE, et al. Lipidomics reveals that acupuncture modulates the lipid metabolism and inflammatory interaction in a mouse model of depression. Brain Behav Immun. 2021 ; 94 : 424-36. https://doi.org/10.1016/j.bbi.2021.02.003
  20. Wu YY, Jiang YL, He XF, Zhao XY, Shao XM, Sun J, et al. 5-HT in the dorsal raphe nucleus is involved in the effects of 100-Hz electro-acupuncture on the pain-depression dyad in rats. Exp Ther Med. 2017 ; 14(1) : 107-14. https://doi.org/10.3892/etm.2017.4479
  21. Park JY. Animal pain models and behavior tests. Hanyang Medical Reviews. 2011 ; 31(2) : 103-6. https://doi.org/10.7599/hmr.2011.31.2.103
  22. WHO Regional Office for the Western Pacific. WHO standard acupuncture point locations in the Western Pacific region. 2008.
  23. Yin CS, Jeong HS, Park HJ, Baik Y, Yoon MH, Choi CB, et al. A proposed transpositional acupoint system in a mouse and rat model. Res Vet Sci. 2008 ; 84(2) : 159-65. https://doi.org/10.1016/j.rvsc.2007.04.004
  24. Park JY, Cho SJ, Lee SH, Ryu Y, Jang JH, Kim SN, et al. Peripheral ERK modulates acupuncture-induced brain neural activity and its functional connectivity. Sci Rep. 2021 ; 11 : 5128. https://doi.org/10.1038/s41598-021-84273-y
  25. Eom GH, Ryu JS, Par JY. Antidepressant effect of liver tonification and four gate acupuncture treatments and its brain neural activity. Korean J Acupunct. 2021 ; 38(3) : 162-74. https://doi.org/10.14406/acu.2021.023
  26. Graduate School of Korean Medicine at National Colleges of Korean Medicine. National committee for the compilation of textbooks on meridian and acupoint studies in korean medicine. MERIDIANOLOGY. 2nd ed. Korean: Jeongdam. 2022.
  27. Oh JE, Kim SN. Anti-Inflammatory effects of acupuncture at ST36 point: a literature review in animal studies. Front Immunol. 2022 ; 12. https://doi.org/10.3389/fimmu.2021.813748
  28. Wang X, Yang J, Liu J, Yang Y, Zhang Z, Xie P. Acupuncture at sanyinjiao(SP6) for patients with primary dysmenorrhea: Protocol for a systematic review and meta-analysis. medRxiv; 2023. https://doi.org/10.1101/2023.09.24.23296053
  29. Wu P, Cheng C, Song X, Yang L, Deng D, Du Z, et al. Acupoint combination effect of Shenmen (HT 7) and Sanyinjiao (SP 6) in treating insomnia: study protocol for a randomized controlled trial. Trials. 2020 ; 21(1) : 261. https://doi.org/10.1186/s13063-020-4170-1
  30. Yoon MJ, Kim SY, Park JY. Recent study trends of the liver-tonification and liver-sedation of saam acupuncture. Korean J Acupunct. 2018 ; 35(1) : 1-17. https://doi.org/10.14406/acu.2018.004
  31. Kim JW, Kim SY. Clinical guidelines for hwabyung I. (overview). J of Oriental Neuropsychiatry. 2013 ; 24 : 3-14. http://dx.doi.org/10.7231/jon.2013.24
  32. Nagakura Y. Therapeutic approaches to nociplastic pain based on findings in the reserpine-induced fibromyalgia-like animal model. J Pharmacol Exp Ther. 2022 ; 381(2) : 106-19. https://doi.org/10.1124/jpet.121.001051
  33. Wood M, Adil O, Wallace T, Fourman S, Wilson SP, Herman JP, et al. Infralimbic prefrontal cortex structural and functional connectivity with the limbic forebrain: a combined viral genetic and optogenetic analysis. Brain Struct Funct. 2019 ; 224(1) : 73-97. https://doi.org/10.1007/s00429-018-1762-6
  34. Hong Y, Zhang L, Liu N, Xu X, Liu D, Tu J. The central nervous mechanism of stress-promoting cancer progression. Int J Mol Sci. 2022 ; 23(20) : 12653. https://doi.org/10.3390/ijms232012653
  35. Sotres-Bayon F, Quirk GJ. Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol. 2010 Apr ; 20(2) : 231-5. https://doi.org/10.1016/j.conb.2010.02.005
  36. Yang S, Boudier-Reveret M, Choo YJ, Chang MC. Association between chronic pain and alterations in the mesolimbic dopaminergic system. Brain Sci. 2020 ; 10(10) : 701. https://doi.org/10.3390/brainsci10100701
  37. Martin SL, Power A, Boyle Y, Anderson IM, Silverdale MA, Jones AKP. 5-HT modulation of pain perception in humans. Psychopharmacology (Berl). 2017 ; 234(19) : 2929-39. https://doi.org/10.1007/s00213-017-4686-6
  38. Humo M, Lu H, Yalcin I. The molecular neurobiology of chronic pain-induced depression. Cell Tissue Res. 2019 ; 377(1) : 21-43. https://doi.org/10.1007/s00441-019-03003-z
  39. Vasic V, Schmidt mhh. Resilience and vulnerability to pain and inflammation in the hippocampus. Int J Mol Sci. 2017 Mar 31 ; 18(4) : 739. https://doi.org/10.3390/ijms18040739