DOI QR코드

DOI QR Code

Oral squamous carcinoma cells stimulated by Porphyromonas gingivalis-derived lipopolysaccharide induce osteoclastogenesis through a paracrine mechanism

  • Bo Ram Keum (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Soon Chul Heo (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Hyung Joon Kim (Department of Oral Physiology, School of Dentistry, Pusan National University)
  • 투고 : 2024.07.11
  • 심사 : 2024.07.26
  • 발행 : 2024.09.30

초록

Periodontal disease (PD) is strongly linked to increased risk of oral squamous cell carcinoma (OSCC); however, the specific mechanism through which the development of PD and OSCC is simultaneously promoted remains unclear. This study explored the impact of periodontal pathogens on OSCC progression and the contribution of periodontal pathogen-stimulated OSCC to PD development. The expression of osteoclastogenesis-inducing factors was assessed using quantitative reverse transcription polymerase chain reaction analysis following stimulation of OSCC with lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis (Pg), a pathogen commonly responsible for PD. The cell counting kit-8 assay was used to determine the effects of Pg-LPS on OSCC proliferation and drug resistance to cisplatin and 5-fluorouracil. The effects of conditioned medium (CM) derived from Pg-LPS-stimulated OSCC on osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining on bone marrow-derived macrophages (BMMs). Pg-LPS administration in SCC-25 and YD-8 OSCC cell lines induced a significant increase in receptor activator of nuclear factor kappa-B ligand mRNA expression; however, it did not affect cell proliferation. Treatment with CM derived from Pg-LPS-stimulated SCC-25 or YD-8 cells markedly enhanced the formation of TRAP-positive multinucleated cells during osteoclast differentiation of BMMs. Altogether, these findings demonstrate that Pg-LPS-stimulated OSCC promoted osteoclastogenesis through a paracrine mechanism.

키워드

과제정보

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreno CC, Kearns C, Benzian H, Allison P, Watt RG. Oral diseases: a global public health challenge. Lancet 2019;394:249-60. doi: 10.1016/S0140-6736(19)31146-8
  2. Surlari Z, Virvescu DI, Baciu ER, Vasluianu RI, Budala DG. The link between periodontal disease and oral cancer-a certainty or a never-ending dilemma? Appl Sci 2021;11:12100. doi: 10.3390/app112412100
  3. Li TJ, Hao YH, Tang YL, Liang XH. Periodontal pathogens: a crucial link between periodontal diseases and oral cancer. Front Microbiol 2022;13:919633. doi: 10.3389/fmicb.2022.919633
  4. Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024;15:1254516. doi: 10.3389/fimmu.2024.1254516
  5. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of osteoclast differentiation by cytokine networks. Immune Netw 2018;18:e8. doi: 10.4110/in.2018.18.e8
  6. Irani S, Barati I, Badiei M. Periodontitis and oral cancer - current concepts of the etiopathogenesis. Oncol Rev 2020;14:465. doi: 10.4081/oncol.2020.465
  7. Heo SC, Kim YN, Choi Y, Joo JY, Hwang JJ, Bae MK, Kim HJ. Elevated expression of cathepsin K in periodontal ligament fibroblast by inflammatory cytokines accelerates osteoclastogenesis via paracrine mechanism in periodontal disease. Int J Mol Sci 2021;22:695. doi: 10.3390/ijms22020695
  8. Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections between the oral and gut microbiomes: reversal of microbial dysbiosis and the balance between systemic health and disease. Microorganisms 2021;9:496. doi: 10.3390/microorganisms9030496
  9. Singh S, Singh AK. Porphyromonas gingivalis in oral squamous cell carcinoma: a review. Microbes Infect 2022;24:104925. doi: 10.1016/j.micinf.2021.104925
  10. Park GH, Gu DR, Lee SH. Inhibitory effect of Chaenomelis Fructus ethanol extract on receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis. Int J Oral Biol 2020;45:15-24. doi: 10.11620/IJOB.2020.45.1.15
  11. Vaassen LAA, Suhr MM, Hagens ERC, Speel EJM, Kessler PAWH. Bone invasion by oral squamous cell carcinoma-is there a link to periodontal disease? A retrospective single center cohort study: 2010-2020. Oral Oncol Rep 2023;8:100108. doi: 10.1016/j.oor.2023.100108
  12. Bi H, Chen X, Gao S, Yu X, Xiao J, Zhang B, Liu X, Dai M. Key triggers of osteoclast-related diseases and available strategies for targeted therapies: a review. Front Med (Lausanne). 2017;4:234. doi: 10.3389/fmed.2017.00234
  13. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast-osteoclast interactions. Connect Tissue Res 2018;59: 99-107. doi: 10.1080/03008207.2017.1290085
  14. Peng X, Cheng L, You Y, Tang C, Ren B, Li Y, Xu X, Zhou X. Oral microbiota in human systematic diseases. Int J Oral Sci 2022;14:14. doi: 10.1038/s41368-022-00163-7
  15. El Demellawy D, Davila J, Shaw A, Nasr Y. Brief review on metabolic bone disease. Acad Forensic Pathol 2018;8:611-40. doi: 10.1177/1925362118797737
  16. Elebyary O, Barbour A, Fine N, Tenenbaum HC, Glogauer M. The crossroads of periodontitis and oral squamous cell carcinoma: immune implications and tumor promoting capacities. Front Oral Health 2021;1:584705. doi: 10.3389/froh.2020.584705
  17. Laliberte C, Ng N, Eymael D, Higgins K, Ali A, Kiss A, Bradley G, Magalhaes MAO. Characterization of oral squamous cell carcinoma associated inflammation: a pilot study. Front Oral Health 2021;2:740469. doi: 10.3389/froh.2021.740469
  18. Li R, Hou M, Yu L, Luo W, Liu R, Wang H. Association between periodontal disease and oral squamous cell carcinoma: a systematic review and meta-analysis. Br J Oral Maxillofac Surg 2023;61:394-402. doi: 10.1016/j.bjoms.2023.05.004
  19. Dong JC, Liao Y, Zhou W, Sun MJ, Zhang HY, Li Y, Song ZC. Porphyromonas gingivalis LPS-stimulated BMSC-derived exosome promotes osteoclastogenesis via miR-151-3p/PAFAH1B1. Oral Dis 2024. doi: 10.1111/odi.15031. [Epub ahead of print]
  20. Zhang X, Junior CR, Liu M, Li F, D'Silva NJ, Kirkwood KL. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncol 2013;49:119-28. doi: 10.1016/j.oraloncology.2012.08.004
  21. Zhang Y, Liang J, Liu P, Wang Q, Liu L, Zhao H. The RANK/RANKL/OPG system and tumor bone metastasis: potential mechanisms and therapeutic strategies. Front Endocrinol (Lausanne) 2022;13:1063815. doi: 10.3389/fendo.2022.1063815
  22. Seong S, Kim JH, Kim N. Pro-inflammatory cytokines modulating osteoclast differentiation and function. J Rheum Dis 2016;23:148-53. doi: 10.4078/jrd.2016.23.3.148
  23. Yip RML, Yim CW. Role of interleukin 6 inhibitors in the management of rheumatoid arthritis. J Clin Rheumatol 2021;27:e516-24. doi: 10.1097/RHU.0000000000001293
  24. Feng W, Liu H, Luo T, Liu D, Du J, Sun J, Wang W, Han X, Yang K, Guo J, Amizuka N, Li M. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways. Sci Rep 2017;7:41411. doi: 10.1038/srep41411
  25. Sobocki BK, Basset CA, Bruhn-Olszewska B, Olszewski P, Szot O, Kazmierczak-Siedlecka K, Guziak M, Nibali L, Leone A. Molecular mechanisms leading from periodontal disease to cancer. Int J Mol Sci 2022;23:970. doi: 10.3390/ijms23020970