과제정보
This research was supported by Hallym University Research Fund, 2022 (HRF-202204-008).
참고문헌
- Murphy-Ullrich JE and Sage EH (2014) Revisiting the matricellular concept. Matrix Biol 37, 1-14 https://doi.org/10.1016/j.matbio.2014.07.005
- Bornstein P and Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14, 608-616 https://doi.org/10.1016/S0955-0674(02)00361-7
- Bornstein P (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol 130, 503-506 https://doi.org/10.1083/jcb.130.3.503
- Chiodoni C, Colombo MP and Sangaletti S (2010) Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev 29, 295-307 https://doi.org/10.1007/s10555-010-9221-8
- O'Neill LAJ, Kishton RJ and Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16, 553-565 https://doi.org/10.1038/nri.2016.70
- Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444, 860-867 https://doi.org/10.1038/nature05485
- Schellings MWM, Vanhoutte D, Swinnen M et al (2008) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 206, 113-123
- Kiefer FW, Zeyda M, Gollinger K et al (2010) Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes 59, 935-946 https://doi.org/10.2337/db09-0404
- Kuijpers MJE, Witt Sd, Nergiz-Unal R et al (2014) Supporting roles of platelet thrombospondin-1 and CD36 in thrombus formation on collagen. Arterioscler Thromb Vasc Biol 34, 1187-1192 https://doi.org/10.1161/ATVBAHA.113.302917
- Phelan MW, Forman LW, Perrine SP and Faller DV (1998) Hypoxia increases thrombospondin-1 transcript and protein in cultured endothelial cells. J Lab Clin Med 132, 519-529 https://doi.org/10.1016/S0022-2143(98)90131-7
- DiPietro LA, Nissen NN, Gamelli RL, Koch AE, Pyle JM and Polverini PJ (1996) Thrombospondin 1 synthesis and function in wound repair. Am J Pathol 148, 1851-1860
- Kyriakides TR, Tam JWY and Bornstein P (1999) Accelerated wound healing in mice with a disruption of the thrombospondin 2 gene. J Invest Dermatol 113, 782-787 https://doi.org/10.1046/j.1523-1747.1999.00755.x
- Nakagawa T, Li JH, Garcia G et al (2004) TGF-β induces proangiogenic and antiangiogenic factorsvia parallel but distinct Smad pathways. Kidney Int 66, 605-613 https://doi.org/10.1111/j.1523-1755.2004.00780.x
- Morgan-Rowe L, Nikitorowicz J, Shiwen X et al (2011) Thrombospondin 1 in hypoxia-conditioned media blocks the growth of human microvascular endothelial cells and is increased in systemic sclerosis tissues. Fibrogenesis Tissue Repair 4, 13
- Bae ON, Wang JM, Baek SH, Wang Q, Yuan H and Chen AF (2013) Oxidative stress-mediated thrombospondin-2 upregulation impairs bone marrow-derived angiogenic cell function in diabetes mellitus. Arterioscler Thromb Vasc Biol 33, 1920-1927 https://doi.org/10.1161/ATVBAHA.113.301609
- Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL and Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6, 41-48 https://doi.org/10.1038/71517
- Chandrasekaran L, He CZ, Al-Barazi H, Krutzsch HC, Iruela-Arispe ML and Roberts DD (2000) Cell contact-dependent activation of α3β1 integrin modulates endothelial cell responses to thrombospondin-1. Mol Biol Cell 11, 2885-2900 https://doi.org/10.1091/mbc.11.9.2885
- Gao AG, Lindberg FP, Dimitry JM, Brown EJ and Frazier WA (1996) Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 135, 533-544 https://doi.org/10.1083/jcb.135.2.533
- Nunes SS, Outeiro-Bernstein MA, Juliano L et al (2008) Syndecan-4 contributes to endothelial tubulogenesis through interactions with two motifs inside the pro-angiogenic N-terminal domain of thrombospondin-1. J Cell Physiol 214, 828-837
- Crawford SE, Stellmach V, Murphy-Ullrich JE et al (1998) Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159-1170 https://doi.org/10.1016/S0092-8674(00)81460-9
- Adams JC and Lawler J (2011) The thrombospondins. Cold Spring Harbor Perspect Biol 3, a009712-a009712
- Gao AG, Lindberg FP, Finn MB, Blystone SD, Brown EJ and Frazier WA (1996) Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem 271, 21-24 https://doi.org/10.1074/jbc.271.1.21
- Qian X, Wang TN, Rothman VL, Nicosia RF and Tuszynski GP (1997) Thrombospondin-1 modulates angiogenesisin vitroby up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res 235, 403-412 https://doi.org/10.1006/excr.1997.3681
- Calabro NE, Kristofik NJ and Kyriakides TR (2014) Thrombospondin-2 and extracellular matrix assembly. Biochim Biophys Acta Gen Subj 1840, 2396-2402 https://doi.org/10.1016/j.bbagen.2014.01.013
- Amend SR, Uluckan O, Hurchla M et al (2015) Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts. J Bone Miner Res 30, 106-115 https://doi.org/10.1002/jbmr.2308
- Oskarsson T, Acharyya S, Zhang XHF et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17, 867-874 https://doi.org/10.1038/nm.2379
- Joester A and Faissner A (2001) The structure and function of tenascins in the nervous system. Matrix Biol 20, 13-22 https://doi.org/10.1016/S0945-053X(00)00136-0
- Apostolova I, Irintchev A and Schachner M (2006) Tenascin-R restricts posttraumatic remodeling of motoneuron innervation and functional recovery after spinal cord injury in adult mice. J Neurosci 26, 7849-7859 https://doi.org/10.1523/JNEUROSCI.1526-06.2006
- Sakai T, Furukawa Y, Chiquet-Ehrismann R et al (1996) Tenascin-X expression in tumor cells and fibroblasts: glucocorticoids as negative regulators in fibroblasts. J Cell Sci 109, 2069-2077 https://doi.org/10.1242/jcs.109.8.2069
- Martina E, Degen M, Ruegg C et al (2010) Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro. FASEB J 24, 778-787 https://doi.org/10.1096/fj.09-140491
- Berking C, Takemoto R, Schaider H et al (2001) Transforming growth factor-β1 increases survival of human melanoma through stroma remodeling1. Cancer Res 61, 8306-8316
- Nakamura Y, Esnault Sp, Maeda T, Kelly EAB, Malter JS and Jarjour NN (2004) Ets-1 regulates TNF-α-induced matrix metalloproteinase-9 and tenascin expression in primary bronchial fibroblasts1. J Immunol 172, 1945-1952 https://doi.org/10.4049/jimmunol.172.3.1945
- Chiquet M, Gelman L, Lutz R and Maier S (2009) From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta Mol Cell Res 1793, 911-920 https://doi.org/10.1016/j.bbamcr.2009.01.012
- Derr LB, McKae LA and Tucker RP (1998) The distribution of tenascin-R in the developing avian nervous system. J Exp Zool 280, 152-164 https://doi.org/10.1002/(SICI)1097-010X(19980201)280:2<152::AID-JEZ6>3.0.CO;2-N
- Takeda K, Shiba H, Mizuno N et al (2005) Brain-derived neurotrophic factor enhances periodontal tissue regeneration. Tissue Eng 11, 1618-1629 https://doi.org/10.1089/ten.2005.11.1618
- Scherberich A, Tucker RP, Degen M, Brown-Luedi M, Andres AC and Chiquet-Ehrismann R (2005) Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro. Oncogene 24, 1525-1532 https://doi.org/10.1038/sj.onc.1208342
- Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A and Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation1. Cancer Res 61, 8586-8594
- Midwood KS, Valenick LV, Hsia HC and Schwarzbauer JE (2004) Coregulation of fibronectin signaling and matrix contraction by tenascin-c and syndecan-4. Mol Biol Cell 15, 5670-5677
- Zacharias U and Rauch U (2006) Competition and cooperation between tenascin-R, lecticans and contactin 1 regulate neurite growth and morphology. J Cell Sci 119, 3456-3466
- Elefteriou F, Exposito JY, Garrone R and Lethias C (1999) Cell adhesion to tenascin-X. Eur J Biochem 263, 840-848 https://doi.org/10.1046/j.1432-1327.1999.00563.x
- Chung CY, Murphy-Ullrich JE and Erickson HP (1996) Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. Mol Biol Cell 7, 883-892 https://doi.org/10.1091/mbc.7.6.883
- Nishio T, Kawaguchi S, Yamamoto M, Iseda T, Kawasaki T and Hase T (2005) Tenascin-C regulates proliferation and migration of cultured astrocytes in a scratch wound assay. Neuroscience 132, 87-102 https://doi.org/10.1016/j.neuroscience.2004.12.028
- Sun Z, Schwenzer A, Rupp T et al (2018) Tenascin-C promotes tumor cell migration and metastasis through integrin α9β1-mediated YAP inhibition. Cancer Res 78, 950-961
- Faissner A, Roll L and Theocharidis U (2017) Tenascin-C in the matrisome of neural stem and progenitor cells. Mol Cell Neurosci 81, 22-31 https://doi.org/10.1016/j.mcn.2016.11.003
- Imanaka-Yoshida K and Aoki H (2014) Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system. Front Physiol 5, 283
- Elefteriou F, Exposito JY, Garrone R and Lethias C (2001) Binding of tenascin-X to decorin. FEBS Lett 495, 44-47 https://doi.org/10.1016/S0014-5793(01)02361-4
- Yamate T, Mocharla H, Taguchi Y, Igietseme JU, Manolagas SC and Abe E (1997) Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow: demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy. Endocrinology 138, 3047-3055 https://doi.org/10.1210/endo.138.7.5285
- Ashkar S, Weber GF, Panoutsakopoulou V et al (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860-864 https://doi.org/10.1126/science.287.5454.860
- Shinohara ML, Lu L, Bu J et al (2006) Osteopontin expression is essential for interferon- production by plasmacytoid dendritic cells. Nat Immunol 7, 498-506
- Mori R, Shaw TJ and Martin P (2008) Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med 205, 43-51 https://doi.org/10.1084/jem.20071412
- Zhao H, Chen Q, Alam A et al (2018) The role of osteopontin in the progression of solid organ tumour. Cell Death Dis 9, 356
- Schulz G, Renkl AC, Seier A, Liaw L and Weiss JM (2008) Regulated osteopontin expression by dendritic cells decisively affects their migratory capacity. J Invest Dermatol 128, 2541-2544 https://doi.org/10.1038/jid.2008.112
- Prince CW and Butler WT (1987) 1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone-derived cell attachment protein, in clonal osteoblast-like osteosarcoma cells. Coll Relat Res 7, 305-313 https://doi.org/10.1016/S0174-173X(87)80036-5
- Hullinger TG, Pan Q, Viswanathan HL and Somerman MJ (2001) TGFβ and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp Cell Res 262, 69-74
- Maeda N, Ohashi T, Chagan-Yasutan H et al (2015) Osteopontin-integrin interaction as a novel molecular target for antibody-mediated immunotherapy in adult T-cell leukemia. Retrovirology 12, 99
- Katagiri YU, Sleeman J, Fujii H et al (1999) CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis1. Cancer Res 59, 219-226
- Klaning E, Christensen B, Sorensen ES, Vorup-Jensen T and Jensen JK (2014) Osteopontin binds multiple calcium ions with high affinity and independently of phosphorylation status. Bone 66, 90-95 https://doi.org/10.1016/j.bone.2014.05.020
- Senger DR, Perruzzi CA, Papadopoulos-Sergiou A and Water LVd (1994) Adhesive properties of osteopontin: regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Mol Biol Cell 5, 565-574
- Chellaiah MA and Hruska KA (2003) The integrin alpha(v)beta(3) and CD44 regulate the actions of osteopontin on osteoclast motility. Calcif Tissue Int 72, 197-205 https://doi.org/10.1007/s00223-002-1025-6
- Zhang H, Guo M, Chen JH et al (2014) Osteopontin knockdown inhibits αv,β3 integrin-induced cell migration and invasion and promotes apoptosis of breast cancer cells by inducing autophagy and inactivating the PI3K/Akt/mTOR pathway. Cell Physiol Biochem 33, 991-1002 https://doi.org/10.1159/000358670
- Zhu B, Suzuki K, Goldberg HA et al (2004) Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. J Cell Physiol 198, 155-167 https://doi.org/10.1002/jcp.10394
- Liu J, Liu Q, Wan Y et al (2014) Osteopontin promotes the progression of gastric cancer through the NF-B pathway regulated by the MAPK and PI3K. Int J Oncol 45, 282-290
- Weber GF, Ashkar S, Glimcher MJ and Cantor H (1996) Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 271, 509-512 https://doi.org/10.1126/science.271.5248.509
- Ge Q, Ruan CC, Ma Y et al (2017) Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci Rep 7, 40253
- Moreno-Viedma V, Tardelli M, Zeyda M, Sibilia M, Burks JD and Stulnig TM (2018) Osteopontin-deficient progenitor cells display enhanced differentiation to adipocytes. Obes Res Clin Pract 12, 277-285 https://doi.org/10.1016/j.orcp.2018.02.006
- Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signaling 3, 239-246 https://doi.org/10.1007/s12079-009-0062-6
- Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML and Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26, 99-105 https://doi.org/10.1016/0092-8674(81)90037-4
- Arnold SA and Brekken RA (2009) SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signaling 3, 255-273 https://doi.org/10.1007/s12079-009-0072-4
- Gan KJ and Sudhof TC (2020) SPARCL1 promotes excitatory but not inhibitory synapse formation and function independent of neurexins and neuroligins. J Neurosci 40, 8088-8102 https://doi.org/10.1523/JNEUROSCI.0454-20.2020
- Reed MJ, Vernon RB, Abrass IB and Sage EH (1994) TGF-β1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol 158, 169-179 https://doi.org/10.1002/jcp.1041580121
- Kato Y, Lewalle JM, Baba Y et al (2001) Induction of SPARC by VEGF in human vascular endothelial cells. Biochem Biophys Res Commun 287, 422-426 https://doi.org/10.1006/bbrc.2001.5622
- McKinnon PJ and Margolskee RF (1996) SC1: a marker for astrocytes in the adult rodent brain is upregulated during reactive astrocytosis. Brain Res 709, 27-36 https://doi.org/10.1016/0006-8993(95)01224-9
- Shin M, Mizokami A, Kim J et al (2013) Exogenous SPARC suppresses proliferation and migration of prostate cancer by interacting with integrin 1. Prostate 73, 1159-1170
- Kupprion C, Motamed K and Sage EH (1998) SPARC (BM-40, Osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 273, 29635-29640 https://doi.org/10.1074/jbc.273.45.29635
- Sullivan MM, Barker TH, Funk SE et al (2006) Matricellular hevin regulates decorin production and collagen assembly. J Biol Chem 281, 27621-27632 https://doi.org/10.1074/jbc.M510507200
- Martinek N, Shahab J, Saathoff M and Ringuette M (2008) Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. J Cell Sci 121, 1671-1680 https://doi.org/10.1242/jcs.021931
- Wang H, Workman G, Chen S et al (2006) Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) binds to fibrinogen fragments D and E, but not to native fibrinogen. Matrix Biol 25, 20-26 https://doi.org/10.1016/j.matbio.2005.09.004
- Girard JP and Springer TA (1996) Modulation of endothelial cell adhesion by hevin, an acidic protein associated with high endothelial venules. J Biol Chem 271, 4511-4517 https://doi.org/10.1074/jbc.271.8.4511
- McClung HM, Thomas SL, Osenkowski P et al (2007) SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neurosci Lett 419, 172-177 https://doi.org/10.1016/j.neulet.2007.04.037
- Wang Y, Liu S, Yan Y, Li S and Tong H (2020) SPARCL1 influences bovine skeletal muscle-derived satellite cell migration and differentiation through an ITGB1-mediated signaling pathway. Animals 10, 1361
- Delany AM, Amling M, Priemel M, Howe C, Baron R and Canalis E (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105, 915-923 https://doi.org/10.1172/JCI7039
- Perbal B (2013) CCN proteins: a centralized communication network. J Cell Commun Signal 7, 169-177 https://doi.org/10.1007/s12079-013-0193-7
- Hutchenreuther J, Nguyen J, Quesnel K et al (2024) Cancer-associated fibroblast-specific expression of the matricellular protein CCN1 coordinates neovascularization and stroma deposition in melanoma metastasis. Cancer Res Commun 4, 556-570 https://doi.org/10.1158/2767-9764.CRC-23-0571
- Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB and Chaqour B (2017) Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 7, 1405
- Takigawa M (2013) CCN2: a master regulator of the genesis of bone and cartilage. J Cell Commun Signal 7, 191-201 https://doi.org/10.1007/s12079-013-0204-8
- Kaasboll OJ, Gadicherla AK, Wang JH et al (2018) Connective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation. J Biol Chem 293, 17953-17970 https://doi.org/10.1074/jbc.RA118.004559
- Hall-Glenn F, De Young RA, Huang BL et al (2012) CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One 7, e30562
- Ellis PD, Chen Q, Barker PJ, Metcalfe JC and Kemp PR (2000) Nov gene encodes adhesion factor for vascular smooth muscle cells and is dynamically regulated in response to vascular injury. Arterioscler Thromb Vasc Biol 20, 1912-1919 https://doi.org/10.1161/01.ATV.20.8.1912
- Son S, Kim H, Lim H, Lee Jh, Lee Km and Shin I (2023) CCN3/NOV promotes metastasis and tumor progression via GPNMB-induced EGFR activation in triple-negative breast cancer. Cell Death Dis 14, 81
- Giusti V and Scotlandi K (2021) CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 15, 545-566
- Banerjee S, Dhar G, Haque I et al (2008) CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res 68, 7606-7612 https://doi.org/10.1158/0008-5472.CAN-08-1461
- Pennica D, Swanson TA, Welsh JW et al (1998) WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A 95, 14717-14722 https://doi.org/10.1073/pnas.95.25.14717
- Zhang F, Hao F, An D et al (2015) The matricellular protein Cyr61 is a key mediator of platelet-derived growth factor-induced cell migration. J Biol Chem 290, 8232-8242 https://doi.org/10.1074/jbc.M114.623074
- Athanasopoulos AN, Schneider D, Keiper T et al (2007) Vascular endothelial growth factor (VEGF)-induced Upregulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem 282, 26746-26753 https://doi.org/10.1074/jbc.M705200200
- Grotendorst GR, Okochi H and Hayashi N (1996) A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7, 469-480
- van Roeyen CRC, Eitner F, Scholl T et al (2008) CCN3 is a novel endogenous PDGF-regulated inhibitor of glomerular cell proliferation. Kidney Int 73, 86-94 https://doi.org/10.1038/sj.ki.5002584
- Liu Y, Song Y, Ye M, Hu X, Wang ZP and Zhu X (2019) The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 17, 28
- Leu SJ, Lam SCT and Lau LF (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through Integrins αvβ3 and α6β1 in human umbilical vein endothelial cells. J Biol Chem 277, 46248-46255 https://doi.org/10.1074/jbc.M209288200
- Inoki I, Shiomi T, Hashimoto G et al (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16, 1-27
- Gao R and Brigstock DR (2004) Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin αvβ3 and heparan sulfate proteoglycan. J Biol Chem 279, 8848-8855
- Lin CG, Leu SJ, Chen N et al (2003) CCN3 (NOV) Is a novel angiogenic regulator of the CCN protein family. J Biol Chem 278, 24200-24208 https://doi.org/10.1074/jbc.M302028200
- Desnoyers L, Arnott D and Pennica D (2001) WISP-1 binds to decorin and biglycan. J Biol Chem 276, 47599-47607 https://doi.org/10.1074/jbc.M108339200
- Myers RB, Wei L and Castellot JJ (2014) The matricellular protein CCN5 regulates podosome function via interaction with integrin αvβ3. J Cell Commun Signal 8, 135-146 https://doi.org/10.1007/s12079-013-0218-2
- Chen CC, Chen N and Lau LF (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276, 10443-10452 https://doi.org/10.1074/jbc.M008087200
- Kiwanuka E, Andersson L, Caterson EJ, Junker JPE, Gerdin B and Eriksson E (2013) CCN2 promotes keratinocyte adhesion and migration via integrin α5β1. Exp Cell Res 319, 2938-2946 https://doi.org/10.1016/j.yexcr.2013.08.021
- Ivkovic S, Yoon BS, Popoff SN et al (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130, 2779-2791 https://doi.org/10.1242/dev.00505
- Safadi FF, Xu J, Smock SL et al (2003) Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 196, 51-62 https://doi.org/10.1002/jcp.10319
- de Vega S, Iwamoto T, Nakamura T et al (2007) TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem 282, 30878-30888 https://doi.org/10.1074/jbc.M705847200
- Godyna S, Diaz-Ricart M and Argraves WS (1996) Fibulin-1 mediates platelet adhesion via a bridge of fibrinogen. Blood 88, 2569-2577 https://doi.org/10.1182/blood.V88.7.2569.bloodjournal8872569
- Ibrahim AM, Sabet S, El-Ghor AA et al (2018) Fibulin-2 is required for basement membrane integrity of mammary epithelium. Sci Rep 8, 14139
- Tsuda T, Wang H, Timpl R and Chu ML (2001) Fibulin-2 expression marks transformed mesenchymal cells in developing cardiac valves, aortic arch vessels, and coronary vessels. Dev Dynam 222, 89-100 https://doi.org/10.1002/dvdy.1172
- McLaughlin PJ, Bakall B, Choi J et al (2007) Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice. Hum Mol Genet 16, 3059-3070 https://doi.org/10.1093/hmg/ddm264
- Kowal RC, Richardson JA, Miano JM and Olson EN (1999) EVEC, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circ Res 84, 1166-1176 https://doi.org/10.1161/01.RES.84.10.1166
- Ramnath NWM, Hawinkels LJAC, van Heijningen PM et al (2015) Fibulin-4 deficiency increases TGF-β signalling in aortic smooth muscle cells due to elevated TGF-β2 levels. Sci Rep 5, 16872
- Chowdhury A, Herzog C, Hasselbach L et al (2014) Expression of fibulin-6 in failing hearts and its role for cardiac fibroblast migration. Cardiovasc Res 103, 509-520 https://doi.org/10.1093/cvr/cvu161
- Chakraborty P, Dash SP and Sarangi PP (2020) The role of adhesion protein fibulin7 in development and diseases. Mol Med 26, 47
- Chen L, Ge Q, Black JL, Deng L, Burgess JK and Oliver BGG (2013) Differential regulation of extracellular matrix and soluble fibulin-1 levels by TGF-β1 in airway smooth muscle cells. PLoS One 8, e65544
- Zhang H, Wu J, Dong H, Khan Shaukat A, Chu ML and Tsuda T (2013) Fibulin-2 deficiency attenuates angiotensin II-induced cardiac hypertrophy by reducing transforming growth factor- signalling. Clin Sci 126, 275-288
- Hu B, Thirtamara-Rajamani KK, Sim H and Viapiano MS (2009) Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion. Mol Cancer Res 7, 1756-1770 https://doi.org/10.1158/1541-7786.MCR-09-0207
- Murtha LA, Hardy SA, Mabotuwana NS et al (2023) Fibulin-3 is necessary to prevent cardiac rupture following myocardial infarction. Sci Rep 13, 14995
- Gallagher WM, Greene LM, Ryan MP et al (2001) Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues. FEBS Lett 489, 59-66 https://doi.org/10.1016/S0014-5793(00)02389-9
- Guadall A, Orriols M, Rodriguez-Calvo R et al (2011) Fibulin-5 is up-regulated by hypoxia in endothelial cells through a hypoxia-inducible factor-1 (HIF-1α)-dependent mechanism. J Biol Chem 286, 7093-7103 https://doi.org/10.1074/jbc.M110.162917
- de Vega S, Kondo A, Suzuki M et al (2019) Fibulin-7 is overexpressed in glioblastomas and modulates glioblastoma neovascularization through interaction with angiopoietin-1. Int J Cancer 145, 2157-2169 https://doi.org/10.1002/ijc.32306
- Tran H, VanDusen WJ and Argraves WS (1997) The self-association and fibronectin-binding sites of fibulin-1 map to calcium-binding epidermal growth factor-like domains. J Biol Chem 272, 22600-22606 https://doi.org/10.1074/jbc.272.36.22600
- Olin AI, Morgelin M, Sasaki T, Timpl R, Heinegard D and Aspberg A (2001) The proteoglycans aggrecan and versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem 276, 1253-1261 https://doi.org/10.1074/jbc.M006783200
- Reinhardt DP, Sasaki T, Dzamba BJ et al (1996) Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem 271, 19489-19496 https://doi.org/10.1074/jbc.271.32.19489
- Kobayashi N, Kostka G, Garbe JHO et al (2007) A comparative analysis of the fibulin protein family: biochemical characterization, binding interactions, and tissue localization. J Biol Chem 282, 11805-11816 https://doi.org/10.1074/jbc.M611029200
- Papke CL and Yanagisawa H (2014) Fibulin-4 and fibulin-5 in elastogenesis and beyond: insights from mouse and human studies. Matrix Biol 37, 142-149 https://doi.org/10.1016/j.matbio.2014.02.004
- Yanagisawa H, Schluterman MK and Brekken RA (2009) Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Comm Signal 3, 337-347
- Zhang JL, Richetti S, Ramezani T et al (2022) Vertebrate extracellular matrix protein hemicentin-1 interacts physically and genetically with basement membrane protein nidogen-2. Matrix Biol 112, 132-154 https://doi.org/10.1016/j.matbio.2022.08.009
- Albig AR, Neil JR and Schiemann WP (2006) Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res 66, 2621-2629 https://doi.org/10.1158/0008-5472.CAN-04-4096
- Cooley MA, Kern CB, Fresco VM et al (2008) Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev Biol 319, 336-345 https://doi.org/10.1016/j.ydbio.2008.04.029
- Horiguchi M, Inoue T, Ohbayashi T et al (2009) Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci U S A 106, 19029-19034 https://doi.org/10.1073/pnas.0908268106
- Stein EV, Miller TW, Ivins-O'Keefe K, Kaur S and Roberts DD (2016) Secreted thrombospondin-1 regulates macrophage interleukin-1β production and activation through CD47. Sci Rep 6, 19684
- Kong P, Gonzalez-Quesada C, Li N, Cavalera M, Lee DW and Frangogiannis NG (2013) Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am J Physiol Endocrinol Metab 305, E439-E450 https://doi.org/10.1152/ajpendo.00006.2013
- Shitaye HS, Terkhorn SP, Combs JA and Hankenson KD (2010) Thrombospondin-2 is an endogenous adipocyte inhibitor. Matrix Biol 29, 549-556 https://doi.org/10.1016/j.matbio.2010.05.006
- Manna PP and Frazier WA (2003) The mechanism of CD47-dependent killing of t cells: heterotrimeric Gidependent inhibition of protein kinase A1. J Immun 170, 3544-3553 https://doi.org/10.4049/jimmunol.170.7.3544
- Liu Z, Morgan S, Ren J et al (2015) Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm. Circ Res 117, 129-141 https://doi.org/10.1161/CIRCRESAHA.117.305262
- Bergstrom SE, Bergdahl E and Sundqvist KG (2013) A cytokine-controlled mechanism for integrated regulation of T-lymphocyte motility, adhesion and activation. Immunology 140, 441-455 https://doi.org/10.1111/imm.12154
- Doyen V, Rubio M, Braun D et al (2003) Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med 198, 1277-1283 https://doi.org/10.1084/jem.20030705
- Catalan V, Gomez-Ambrosi J, Rodriguez A et al (2012) Increased tenascin C and toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. J Clin Endocrinol Metab 97, E1880-E1889 https://doi.org/10.1210/jc.2012-1670
- Midwood K, Sacre S, Piccinini AM et al (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15, 774-780 https://doi.org/10.1038/nm.1987
- Murdamoothoo D, Sun Z, Yilmaz A et al (2021) Tenascin-C immobilizes infiltrating T lymphocytes through CXCL12 promoting breast cancer progression. EMBO Mol Med 13, e13270
- Koguchi Y, Kawakami K, Uezu K et al (2003) High plasma osteopontin level and its relationship with interleukin-12-mediated type 1 T helper cell response in tuberculosis. Am J Respir Crit Care Med 167, 1355-1359 https://doi.org/10.1164/rccm.200209-1113OC
- Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H and Ashkar S (2002) Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leukoc Biol 72, 752-761 https://doi.org/10.1189/jlb.72.4.752
- Nomiyama T, Perez-Tilve D, Ogawa D et al (2007) Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest 117, 2877-2888 https://doi.org/10.1172/JCI31986
- Zeyda M, Gollinger K, Todoric J et al (2011) Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology 152, 2219-2227 https://doi.org/10.1210/en.2010-1328
- Ikeda T, Shirasawa T, Esaki Y, Yoshiki S and Hirokawa K (1993) Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest 92, 2814-2820 https://doi.org/10.1172/JCI116901
- Syn WK, Choi SS, Liaskou E et al (2011) Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology 53, 106-115 https://doi.org/10.1002/hep.23998
- Tartare-Deckert S, Chavey C, Monthouel MN, Gautier N and Van Obberghen E (2001) The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. J Biol Chem 276, 22231-22237 https://doi.org/10.1074/jbc.M010634200
- Kos K and Wilding JPH (2010) SPARC: a key player in the pathologies associated with obesity and diabetes. Nat Rev Endocrinol 6, 225-235 https://doi.org/10.1038/nrendo.2010.18
- Shen Y, Zhao Y, Yuan L et al (2014) SPARC is overexpressed in adipose tissues of diet-induced obese rats and causes insulin resistance in 3T3-L1 adipocytes. Acta Histochem 116, 158-166
- Nie J and Sage EH (2009) SPARC inhibits adipogenesis by its enhancement of β-catenin signaling. J Biol Chem 284, 1279-1290
- Bradshaw AD, Graves DC, Motamed K and Sage EH (2003) SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci U S A 100, 6045-6050 https://doi.org/10.1073/pnas.1030790100
- Ryu S, Sidorov S, Ravussin E et al (2022) The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 55, 1609-1626.e7 https://doi.org/10.1016/j.immuni.2022.07.007
- Ryu S, Spadaro O, Sidorov S et al (2023) Reduction of SPARC protects mice against NLRP3 inflammasome activation and obesity. J Clin Invest 133, e169173
- Toba H, Bras LEdC, Baicu CF, Zile MR, Lindsey ML and Bradshaw AD (2015) Secreted protein acidic and rich in cysteine facilitates age-related cardiac inflammation and macrophage M1 polarization. Am J Physiol Cell Physiol 308, C972-C982 https://doi.org/10.1152/ajpcell.00402.2014
- Ju L, Sun Y, Xue H et al (2020) CCN1 promotes hepatic steatosis and inflammation in non-alcoholic steatohepatitis. Sci Rep 10, 3201
- Bai T, Chen CC and Lau LF (2010) Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol 184, 3223-3232 https://doi.org/10.4049/jimmunol.0902792
- Imhof BA, Jemelin S, Ballet R et al (2016) CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A 113, E4847-4856
- Tan JTM, McLennan SV, Williams PF et al (2013) Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am J Physiol Endocrinol Metab 304, E1291-E1302 https://doi.org/10.1152/ajpendo.00654.2012
- Spencer M, Yao-Borengasser A, Unal R et al (2010) Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab 299, E1016-E1027 https://doi.org/10.1152/ajpendo.00329.2010
- Rodrigues-Diez R, Rodrigues-Diez RR, Rayego-Mateos S et al (2013) The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. Lab Invest 93, 812-824 https://doi.org/10.1038/labinvest.2013.67
- Pakradouni J, Le Goff W, Calmel C et al (2013) Plasma NOV/CCN3 levels are closely associated with obesity in patients with metabolic disorders. PLoS One 8, e66788
- Martinerie C, Garcia M, Do TTH et al (2016) NOV/CCN3: a new adipocytokine involved in obesity-associated insulin resistance. Diabetes 65, 2502-2515 https://doi.org/10.2337/db15-0617
- Akashi S, Nishida T, El-Seoudi A, Takigawa M, Iida S and Kubota S (2018) Metabolic regulation of the CCN family genes by glycolysis in chondrocytes. J Cell Commun Signal 12, 245-252
- Ferrand N, Bereziat V, Moldes M, Zaoui M, Larsen AK and Sabbah M (2017) WISP1/CCN4 inhibits adipocyte differentiation through repression of PPARγ activity. Sci Rep 7, 1749
- Holmager P, Egstrup M, Gustafsson I et al (2017) Galectin-3 and fibulin-1 in systolic heart failure - relation to glucose metabolism and left ventricular contractile reserve. BMC Cardiovasc Disord 17, 22
- Skov V, Cangemi C, Gram J et al (2014) Metformin, but not rosiglitazone, attenuates the increasing plasma levels of a new cardiovascular marker, fibulin-1, in patients with type 2 diabetes. Diabetes Care 37, 760-766 https://doi.org/10.2337/dc13-1022
- Nadler ST, Stoehr JP, Schueler KL, Tanimoto G, Yandell BS and Attie AD (2000) The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci U S A 97, 11371-11376 https://doi.org/10.1073/pnas.97.21.11371
- Li S, Jiang H, Wang S et al (2023) Fibulin-2: a potential regulator of immune dysfunction after bone trauma. Immun Inflamm Dis 11, e846
- Runhaar J, Sanchez C, Taralla S, Henrotin Y and Bierma-Zeinstra SMA (2016) Fibulin-3 fragments are prognostic biomarkers of osteoarthritis incidence in overweight and obese women. Osteoarthr Cartil 24, 672-678 https://doi.org/10.1016/j.joca.2015.10.013
- Lau ES, Paniagua SM, Zarbafian S et al (2021) Cardiovascular biomarkers of obesity and overlap with cardio-metabolic dysfunction. J Am Heart Assoc 10, e020215
- Okuyama T, Shirakawa J, Yanagisawa H et al (2017) Identification of the matricellular protein Fibulin-5 as a target molecule of glucokinase-mediated calcineurin/NFAT signaling in pancreatic islets. Sci Rep 7, 2364
- Chu LY, Ramakrishnan DP and Silverstein RL (2013) Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood 122, 1822-1832
- Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J and Iruela-Arispe ML (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98, 12485-12490 https://doi.org/10.1073/pnas.171460498
- Streit M, Velasco P, Riccardi L et al (2000) Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J 19, 3272-3282 https://doi.org/10.1093/emboj/19.13.3272
- Kyriakides TR, Zhu YH, Smith LT et al (1998) Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 140, 419-430 https://doi.org/10.1083/jcb.140.2.419
- Hecht JT, Nelson LD, Crowder E et al (1995) Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet 10, 325-329 https://doi.org/10.1038/ng0795-325
- Midwood KS, Hussenet T, Langlois B and Orend G (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68, 3175-3199 https://doi.org/10.1007/s00018-011-0783-6
- Tamaoki M, Imanaka-Yoshida K, Yokoyama K et al (2005) Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 167, 71-80
- Matsuda A, Yoshiki A, Tagawa Y, Matsuda H and Kusakabe M (1999) Corneal wound healing in tenascin knockout mouse. Invest Ophthalmol Vis Sci 40, 1071-1080
- Imanaka-Yoshida K, Yoshida T and Miyagawa-Tomita S (2014) Tenascin-C in development and disease of blood vessels. Anat Rec 297, 1747-1757 https://doi.org/10.1002/ar.22985
- Zweers MC, Bristow J, Steijlen PM et al (2003) Haploinsufficiency of TNXB is associated with hypermobility type of ehlers-danlos syndrome. Am J Hum Genet 73, 214-217 https://doi.org/10.1086/376564
- Icer MA and Gezmen-Karadag M (2018) The multiple functions and mechanisms of osteopontin. Clin Biochem 59, 17-24 https://doi.org/10.1016/j.clinbiochem.2018.07.003
- Ross FP, Chappel J, Alvarez JI et al (1993) Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem 268, 9901-9907 https://doi.org/10.1016/S0021-9258(18)98430-9
- Wang W, Li P, Li W et al (2017) Osteopontin activates mesenchymal stem cells to repair skin wound. PLoS One 12, e0185346
- Gao H, Steffen MC and Ramos KS (2012) Osteopontin regulates -smooth muscle actin and calponin in vascular smooth muscle cells. Cell Biol Int 36, 155-161
- Riew TR, Kim S, Jin X, Kim HL, Lee JH and Lee MY (2019) Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J Neuroinflamm 16, 99
- Norose K, Clark JI, Syed NA et al (1998) SPARC deficiency leads to early-onset cataractogenesis. Invest Ophthalmol Vis Sci 39, 2674-2680
- Rentz TJ, Poobalarahi F, Bornstein P, Sage EH and Bradshaw AD (2007) SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem 282, 22062-22071 https://doi.org/10.1074/jbc.M700167200
- Reed MJ, Puolakkainen P, Lane TF, Dickerson D, Bornstein P and Sage EH (1993) Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem 41, 1467-1477 https://doi.org/10.1177/41.10.8245406
- Kucukdereli H, Allen NJ, Lee AT et al (2011) Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A 108, E440-E449
- Chaurasia SS, Perera PR, Poh R, Lim RR, Wong TT and Mehta JS (2013) Hevin plays a pivotal role in corneal wound healing. PLoS One 8, e81544
- Chen CC and Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41, 771-783 https://doi.org/10.1016/j.biocel.2008.07.025
- Jun JI and Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12, 676-685 https://doi.org/10.1038/ncb2070
- Tsang M and Leask A (2015) CCN2 is required for recruitment of Sox2-expressing cells during cutaneous tissue repair. J Cell Commun Signal 9, 341-346 https://doi.org/10.1007/s12079-014-0245-7
- Lin CG, Chen CC, Leu SJ, Grzeszkiewicz TM and Lau LF (2005) Integrin-dependent functions of the angiogenic inducer NOV (CCN3): implication in wound healing. J Biol Chem 280, 8229-8237 https://doi.org/10.1074/jbc.M404903200
- Ono M, Masaki A, Maeda A et al (2018) CCN4/WISP1 controls cutaneous wound healing by modulating proliferation, migration and ECM expression in dermal fibroblasts via α5β1 and TNFα. Matrix Biol 68-69, 533-546 https://doi.org/10.1016/j.matbio.2018.01.004
- Argraves WS, Tran H, Burgess WH and Dickerson K (1990) Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure. J Cell Biol 111, 3155-3164 https://doi.org/10.1083/jcb.111.6.3155
- Balbona K, Tran H, Godyna S, Ingham KC, Strickland DK and Argraves WS (1992) Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin. J Biol Chem 267, 20120-20125 https://doi.org/10.1016/S0021-9258(19)88674-X
- Yasmin, Maskari RA, McEniery CM et al (2018) The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness. Sci Rep 8, 8550
- Li SD, Xing W, Wang SC et al (2023) Fibulin2: a negative regulator of BMSC osteogenic differentiation in infected bone fracture healing. Exp Mol Med 55, 443-456 https://doi.org/10.1038/s12276-023-00942-0
- Lin Z, Wang Z, Li G, Li B, Xie W and Xiang D (2016) Fibulin-3 may improve vascular health through inhibition of MMP-2/9 and oxidative stress in spontaneously hypertensive rats. Mol Med Rep 13, 3805-3812 https://doi.org/10.3892/mmr.2016.5036
- Gerarduzzi C, Hartmann U, Leask A and Drobetsky E (2020) The matrix revolution: matricellular proteins and restructuring of the cancer microenvironment. Cancer Res 80, 2705-2717
- Prakoura N and Chatziantoniou C (2017) Matricellular proteins and organ fibrosis. Curr Pathobiol Rep 5, 111-121 https://doi.org/10.1007/s40139-017-0138-6