DOI QR코드

DOI QR Code

Matricellular proteins in immunometabolism and tissue homeostasis

  • Kyoungjun Eun (Department of Pharmacology, College of Medicine, Hallym University) ;
  • Ah Young Kim (Department of Pharmacology, College of Medicine, Hallym University) ;
  • Seungjin Ryu (Department of Pharmacology, College of Medicine, Hallym University)
  • Received : 2023.08.01
  • Accepted : 2024.04.25
  • Published : 2024.09.30

Abstract

Matricellular proteins are integral non-structural components of the extracellular matrix. They serve as essential modulators of immunometabolism and tissue homeostasis, playing critical roles in physiological and pathological conditions. These extracellular matrix proteins including thrombospondins, osteopontin, tenascins, the secreted protein acidic and rich in cysteine (SPARC) family, the Cyr61, CTGF, NOV (CCN) family, and fibulins have multi-faceted functions in regulating immune cell functions, metabolic pathways, and tissue homeostasis. They are involved in immune-metabolic regulation and influence processes such as insulin signaling, adipogenesis, lipid metabolism, and immune cell function, playing significant roles in metabolic disorders such as obesity and diabetes. Furthermore, their modulation of tissue homeostasis processes including cellular adhesion, differentiation, migration, repair, and regeneration is instrumental for maintaining tissue integrity and function. The importance of these proteins in maintaining physiological equilibrium is underscored by the fact that alterations in their expression or function often coincide with disease manifestation. This review contributes to our growing understanding of these proteins, their mechanisms, and their potential therapeutic applications.

Keywords

Acknowledgement

This research was supported by Hallym University Research Fund, 2022 (HRF-202204-008).

References

  1. Murphy-Ullrich JE and Sage EH (2014) Revisiting the matricellular concept. Matrix Biol 37, 1-14  https://doi.org/10.1016/j.matbio.2014.07.005
  2. Bornstein P and Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14, 608-616  https://doi.org/10.1016/S0955-0674(02)00361-7
  3. Bornstein P (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol 130, 503-506  https://doi.org/10.1083/jcb.130.3.503
  4. Chiodoni C, Colombo MP and Sangaletti S (2010) Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev 29, 295-307  https://doi.org/10.1007/s10555-010-9221-8
  5. O'Neill LAJ, Kishton RJ and Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16, 553-565  https://doi.org/10.1038/nri.2016.70
  6. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444, 860-867  https://doi.org/10.1038/nature05485
  7. Schellings MWM, Vanhoutte D, Swinnen M et al (2008) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 206, 113-123 
  8. Kiefer FW, Zeyda M, Gollinger K et al (2010) Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes 59, 935-946  https://doi.org/10.2337/db09-0404
  9. Kuijpers MJE, Witt Sd, Nergiz-Unal R et al (2014) Supporting roles of platelet thrombospondin-1 and CD36 in thrombus formation on collagen. Arterioscler Thromb Vasc Biol 34, 1187-1192  https://doi.org/10.1161/ATVBAHA.113.302917
  10. Phelan MW, Forman LW, Perrine SP and Faller DV (1998) Hypoxia increases thrombospondin-1 transcript and protein in cultured endothelial cells. J Lab Clin Med 132, 519-529  https://doi.org/10.1016/S0022-2143(98)90131-7
  11. DiPietro LA, Nissen NN, Gamelli RL, Koch AE, Pyle JM and Polverini PJ (1996) Thrombospondin 1 synthesis and function in wound repair. Am J Pathol 148, 1851-1860 
  12. Kyriakides TR, Tam JWY and Bornstein P (1999) Accelerated wound healing in mice with a disruption of the thrombospondin 2 gene. J Invest Dermatol 113, 782-787  https://doi.org/10.1046/j.1523-1747.1999.00755.x
  13. Nakagawa T, Li JH, Garcia G et al (2004) TGF-β induces proangiogenic and antiangiogenic factorsvia parallel but distinct Smad pathways. Kidney Int 66, 605-613  https://doi.org/10.1111/j.1523-1755.2004.00780.x
  14. Morgan-Rowe L, Nikitorowicz J, Shiwen X et al (2011) Thrombospondin 1 in hypoxia-conditioned media blocks the growth of human microvascular endothelial cells and is increased in systemic sclerosis tissues. Fibrogenesis Tissue Repair 4, 13 
  15. Bae ON, Wang JM, Baek SH, Wang Q, Yuan H and Chen AF (2013) Oxidative stress-mediated thrombospondin-2 upregulation impairs bone marrow-derived angiogenic cell function in diabetes mellitus. Arterioscler Thromb Vasc Biol 33, 1920-1927  https://doi.org/10.1161/ATVBAHA.113.301609
  16. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL and Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6, 41-48  https://doi.org/10.1038/71517
  17. Chandrasekaran L, He CZ, Al-Barazi H, Krutzsch HC, Iruela-Arispe ML and Roberts DD (2000) Cell contact-dependent activation of α3β1 integrin modulates endothelial cell responses to thrombospondin-1. Mol Biol Cell 11, 2885-2900  https://doi.org/10.1091/mbc.11.9.2885
  18. Gao AG, Lindberg FP, Dimitry JM, Brown EJ and Frazier WA (1996) Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 135, 533-544  https://doi.org/10.1083/jcb.135.2.533
  19. Nunes SS, Outeiro-Bernstein MA, Juliano L et al (2008) Syndecan-4 contributes to endothelial tubulogenesis through interactions with two motifs inside the pro-angiogenic N-terminal domain of thrombospondin-1. J Cell Physiol 214, 828-837 
  20. Crawford SE, Stellmach V, Murphy-Ullrich JE et al (1998) Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159-1170  https://doi.org/10.1016/S0092-8674(00)81460-9
  21. Adams JC and Lawler J (2011) The thrombospondins. Cold Spring Harbor Perspect Biol 3, a009712-a009712 
  22. Gao AG, Lindberg FP, Finn MB, Blystone SD, Brown EJ and Frazier WA (1996) Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem 271, 21-24  https://doi.org/10.1074/jbc.271.1.21
  23. Qian X, Wang TN, Rothman VL, Nicosia RF and Tuszynski GP (1997) Thrombospondin-1 modulates angiogenesisin vitroby up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res 235, 403-412  https://doi.org/10.1006/excr.1997.3681
  24. Calabro NE, Kristofik NJ and Kyriakides TR (2014) Thrombospondin-2 and extracellular matrix assembly. Biochim Biophys Acta Gen Subj 1840, 2396-2402  https://doi.org/10.1016/j.bbagen.2014.01.013
  25. Amend SR, Uluckan O, Hurchla M et al (2015) Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts. J Bone Miner Res 30, 106-115  https://doi.org/10.1002/jbmr.2308
  26. Oskarsson T, Acharyya S, Zhang XHF et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17, 867-874  https://doi.org/10.1038/nm.2379
  27. Joester A and Faissner A (2001) The structure and function of tenascins in the nervous system. Matrix Biol 20, 13-22  https://doi.org/10.1016/S0945-053X(00)00136-0
  28. Apostolova I, Irintchev A and Schachner M (2006) Tenascin-R restricts posttraumatic remodeling of motoneuron innervation and functional recovery after spinal cord injury in adult mice. J Neurosci 26, 7849-7859  https://doi.org/10.1523/JNEUROSCI.1526-06.2006
  29. Sakai T, Furukawa Y, Chiquet-Ehrismann R et al (1996) Tenascin-X expression in tumor cells and fibroblasts: glucocorticoids as negative regulators in fibroblasts. J Cell Sci 109, 2069-2077  https://doi.org/10.1242/jcs.109.8.2069
  30. Martina E, Degen M, Ruegg C et al (2010) Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro. FASEB J 24, 778-787  https://doi.org/10.1096/fj.09-140491
  31. Berking C, Takemoto R, Schaider H et al (2001) Transforming growth factor-β1 increases survival of human melanoma through stroma remodeling1. Cancer Res 61, 8306-8316 
  32. Nakamura Y, Esnault Sp, Maeda T, Kelly EAB, Malter JS and Jarjour NN (2004) Ets-1 regulates TNF-α-induced matrix metalloproteinase-9 and tenascin expression in primary bronchial fibroblasts1. J Immunol 172, 1945-1952  https://doi.org/10.4049/jimmunol.172.3.1945
  33. Chiquet M, Gelman L, Lutz R and Maier S (2009) From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta Mol Cell Res 1793, 911-920  https://doi.org/10.1016/j.bbamcr.2009.01.012
  34. Derr LB, McKae LA and Tucker RP (1998) The distribution of tenascin-R in the developing avian nervous system. J Exp Zool 280, 152-164  https://doi.org/10.1002/(SICI)1097-010X(19980201)280:2<152::AID-JEZ6>3.0.CO;2-N
  35. Takeda K, Shiba H, Mizuno N et al (2005) Brain-derived neurotrophic factor enhances periodontal tissue regeneration. Tissue Eng 11, 1618-1629  https://doi.org/10.1089/ten.2005.11.1618
  36. Scherberich A, Tucker RP, Degen M, Brown-Luedi M, Andres AC and Chiquet-Ehrismann R (2005) Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro. Oncogene 24, 1525-1532  https://doi.org/10.1038/sj.onc.1208342
  37. Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A and Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation1. Cancer Res 61, 8586-8594 
  38. Midwood KS, Valenick LV, Hsia HC and Schwarzbauer JE (2004) Coregulation of fibronectin signaling and matrix contraction by tenascin-c and syndecan-4. Mol Biol Cell 15, 5670-5677 
  39. Zacharias U and Rauch U (2006) Competition and cooperation between tenascin-R, lecticans and contactin 1 regulate neurite growth and morphology. J Cell Sci 119, 3456-3466 
  40. Elefteriou F, Exposito JY, Garrone R and Lethias C (1999) Cell adhesion to tenascin-X. Eur J Biochem 263, 840-848  https://doi.org/10.1046/j.1432-1327.1999.00563.x
  41. Chung CY, Murphy-Ullrich JE and Erickson HP (1996) Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. Mol Biol Cell 7, 883-892  https://doi.org/10.1091/mbc.7.6.883
  42. Nishio T, Kawaguchi S, Yamamoto M, Iseda T, Kawasaki T and Hase T (2005) Tenascin-C regulates proliferation and migration of cultured astrocytes in a scratch wound assay. Neuroscience 132, 87-102  https://doi.org/10.1016/j.neuroscience.2004.12.028
  43. Sun Z, Schwenzer A, Rupp T et al (2018) Tenascin-C promotes tumor cell migration and metastasis through integrin α9β1-mediated YAP inhibition. Cancer Res 78, 950-961 
  44. Faissner A, Roll L and Theocharidis U (2017) Tenascin-C in the matrisome of neural stem and progenitor cells. Mol Cell Neurosci 81, 22-31  https://doi.org/10.1016/j.mcn.2016.11.003
  45. Imanaka-Yoshida K and Aoki H (2014) Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system. Front Physiol 5, 283 
  46. Elefteriou F, Exposito JY, Garrone R and Lethias C (2001) Binding of tenascin-X to decorin. FEBS Lett 495, 44-47  https://doi.org/10.1016/S0014-5793(01)02361-4
  47. Yamate T, Mocharla H, Taguchi Y, Igietseme JU, Manolagas SC and Abe E (1997) Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow: demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy. Endocrinology 138, 3047-3055  https://doi.org/10.1210/endo.138.7.5285
  48. Ashkar S, Weber GF, Panoutsakopoulou V et al (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860-864  https://doi.org/10.1126/science.287.5454.860
  49. Shinohara ML, Lu L, Bu J et al (2006) Osteopontin expression is essential for interferon- production by plasmacytoid dendritic cells. Nat Immunol 7, 498-506 
  50. Mori R, Shaw TJ and Martin P (2008) Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med 205, 43-51  https://doi.org/10.1084/jem.20071412
  51. Zhao H, Chen Q, Alam A et al (2018) The role of osteopontin in the progression of solid organ tumour. Cell Death Dis 9, 356 
  52. Schulz G, Renkl AC, Seier A, Liaw L and Weiss JM (2008) Regulated osteopontin expression by dendritic cells decisively affects their migratory capacity. J Invest Dermatol 128, 2541-2544  https://doi.org/10.1038/jid.2008.112
  53. Prince CW and Butler WT (1987) 1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone-derived cell attachment protein, in clonal osteoblast-like osteosarcoma cells. Coll Relat Res 7, 305-313  https://doi.org/10.1016/S0174-173X(87)80036-5
  54. Hullinger TG, Pan Q, Viswanathan HL and Somerman MJ (2001) TGFβ and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp Cell Res 262, 69-74 
  55. Maeda N, Ohashi T, Chagan-Yasutan H et al (2015) Osteopontin-integrin interaction as a novel molecular target for antibody-mediated immunotherapy in adult T-cell leukemia. Retrovirology 12, 99 
  56. Katagiri YU, Sleeman J, Fujii H et al (1999) CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis1. Cancer Res 59, 219-226 
  57. Klaning E, Christensen B, Sorensen ES, Vorup-Jensen T and Jensen JK (2014) Osteopontin binds multiple calcium ions with high affinity and independently of phosphorylation status. Bone 66, 90-95  https://doi.org/10.1016/j.bone.2014.05.020
  58. Senger DR, Perruzzi CA, Papadopoulos-Sergiou A and Water LVd (1994) Adhesive properties of osteopontin: regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Mol Biol Cell 5, 565-574 
  59. Chellaiah MA and Hruska KA (2003) The integrin alpha(v)beta(3) and CD44 regulate the actions of osteopontin on osteoclast motility. Calcif Tissue Int 72, 197-205  https://doi.org/10.1007/s00223-002-1025-6
  60. Zhang H, Guo M, Chen JH et al (2014) Osteopontin knockdown inhibits αv,β3 integrin-induced cell migration and invasion and promotes apoptosis of breast cancer cells by inducing autophagy and inactivating the PI3K/Akt/mTOR pathway. Cell Physiol Biochem 33, 991-1002  https://doi.org/10.1159/000358670
  61. Zhu B, Suzuki K, Goldberg HA et al (2004) Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. J Cell Physiol 198, 155-167  https://doi.org/10.1002/jcp.10394
  62. Liu J, Liu Q, Wan Y et al (2014) Osteopontin promotes the progression of gastric cancer through the NF-B pathway regulated by the MAPK and PI3K. Int J Oncol 45, 282-290 
  63. Weber GF, Ashkar S, Glimcher MJ and Cantor H (1996) Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 271, 509-512  https://doi.org/10.1126/science.271.5248.509
  64. Ge Q, Ruan CC, Ma Y et al (2017) Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci Rep 7, 40253 
  65. Moreno-Viedma V, Tardelli M, Zeyda M, Sibilia M, Burks JD and Stulnig TM (2018) Osteopontin-deficient progenitor cells display enhanced differentiation to adipocytes. Obes Res Clin Pract 12, 277-285  https://doi.org/10.1016/j.orcp.2018.02.006
  66. Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signaling 3, 239-246  https://doi.org/10.1007/s12079-009-0062-6
  67. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML and Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26, 99-105  https://doi.org/10.1016/0092-8674(81)90037-4
  68. Arnold SA and Brekken RA (2009) SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signaling 3, 255-273  https://doi.org/10.1007/s12079-009-0072-4
  69. Gan KJ and Sudhof TC (2020) SPARCL1 promotes excitatory but not inhibitory synapse formation and function independent of neurexins and neuroligins. J Neurosci 40, 8088-8102  https://doi.org/10.1523/JNEUROSCI.0454-20.2020
  70. Reed MJ, Vernon RB, Abrass IB and Sage EH (1994) TGF-β1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol 158, 169-179  https://doi.org/10.1002/jcp.1041580121
  71. Kato Y, Lewalle JM, Baba Y et al (2001) Induction of SPARC by VEGF in human vascular endothelial cells. Biochem Biophys Res Commun 287, 422-426  https://doi.org/10.1006/bbrc.2001.5622
  72. McKinnon PJ and Margolskee RF (1996) SC1: a marker for astrocytes in the adult rodent brain is upregulated during reactive astrocytosis. Brain Res 709, 27-36  https://doi.org/10.1016/0006-8993(95)01224-9
  73. Shin M, Mizokami A, Kim J et al (2013) Exogenous SPARC suppresses proliferation and migration of prostate cancer by interacting with integrin 1. Prostate 73, 1159-1170 
  74. Kupprion C, Motamed K and Sage EH (1998) SPARC (BM-40, Osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 273, 29635-29640  https://doi.org/10.1074/jbc.273.45.29635
  75. Sullivan MM, Barker TH, Funk SE et al (2006) Matricellular hevin regulates decorin production and collagen assembly. J Biol Chem 281, 27621-27632  https://doi.org/10.1074/jbc.M510507200
  76. Martinek N, Shahab J, Saathoff M and Ringuette M (2008) Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. J Cell Sci 121, 1671-1680  https://doi.org/10.1242/jcs.021931
  77. Wang H, Workman G, Chen S et al (2006) Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) binds to fibrinogen fragments D and E, but not to native fibrinogen. Matrix Biol 25, 20-26  https://doi.org/10.1016/j.matbio.2005.09.004
  78. Girard JP and Springer TA (1996) Modulation of endothelial cell adhesion by hevin, an acidic protein associated with high endothelial venules. J Biol Chem 271, 4511-4517  https://doi.org/10.1074/jbc.271.8.4511
  79. McClung HM, Thomas SL, Osenkowski P et al (2007) SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neurosci Lett 419, 172-177  https://doi.org/10.1016/j.neulet.2007.04.037
  80. Wang Y, Liu S, Yan Y, Li S and Tong H (2020) SPARCL1 influences bovine skeletal muscle-derived satellite cell migration and differentiation through an ITGB1-mediated signaling pathway. Animals 10, 1361 
  81. Delany AM, Amling M, Priemel M, Howe C, Baron R and Canalis E (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105, 915-923  https://doi.org/10.1172/JCI7039
  82. Perbal B (2013) CCN proteins: a centralized communication network. J Cell Commun Signal 7, 169-177  https://doi.org/10.1007/s12079-013-0193-7
  83. Hutchenreuther J, Nguyen J, Quesnel K et al (2024) Cancer-associated fibroblast-specific expression of the matricellular protein CCN1 coordinates neovascularization and stroma deposition in melanoma metastasis. Cancer Res Commun 4, 556-570  https://doi.org/10.1158/2767-9764.CRC-23-0571
  84. Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB and Chaqour B (2017) Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 7, 1405 
  85. Takigawa M (2013) CCN2: a master regulator of the genesis of bone and cartilage. J Cell Commun Signal 7, 191-201  https://doi.org/10.1007/s12079-013-0204-8
  86. Kaasboll OJ, Gadicherla AK, Wang JH et al (2018) Connective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation. J Biol Chem 293, 17953-17970  https://doi.org/10.1074/jbc.RA118.004559
  87. Hall-Glenn F, De Young RA, Huang BL et al (2012) CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One 7, e30562 
  88. Ellis PD, Chen Q, Barker PJ, Metcalfe JC and Kemp PR (2000) Nov gene encodes adhesion factor for vascular smooth muscle cells and is dynamically regulated in response to vascular injury. Arterioscler Thromb Vasc Biol 20, 1912-1919  https://doi.org/10.1161/01.ATV.20.8.1912
  89. Son S, Kim H, Lim H, Lee Jh, Lee Km and Shin I (2023) CCN3/NOV promotes metastasis and tumor progression via GPNMB-induced EGFR activation in triple-negative breast cancer. Cell Death Dis 14, 81 
  90. Giusti V and Scotlandi K (2021) CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 15, 545-566 
  91. Banerjee S, Dhar G, Haque I et al (2008) CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res 68, 7606-7612  https://doi.org/10.1158/0008-5472.CAN-08-1461
  92. Pennica D, Swanson TA, Welsh JW et al (1998) WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A 95, 14717-14722  https://doi.org/10.1073/pnas.95.25.14717
  93. Zhang F, Hao F, An D et al (2015) The matricellular protein Cyr61 is a key mediator of platelet-derived growth factor-induced cell migration. J Biol Chem 290, 8232-8242  https://doi.org/10.1074/jbc.M114.623074
  94. Athanasopoulos AN, Schneider D, Keiper T et al (2007) Vascular endothelial growth factor (VEGF)-induced Upregulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem 282, 26746-26753  https://doi.org/10.1074/jbc.M705200200
  95. Grotendorst GR, Okochi H and Hayashi N (1996) A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7, 469-480 
  96. van Roeyen CRC, Eitner F, Scholl T et al (2008) CCN3 is a novel endogenous PDGF-regulated inhibitor of glomerular cell proliferation. Kidney Int 73, 86-94  https://doi.org/10.1038/sj.ki.5002584
  97. Liu Y, Song Y, Ye M, Hu X, Wang ZP and Zhu X (2019) The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 17, 28 
  98. Leu SJ, Lam SCT and Lau LF (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through Integrins αvβ3 and α6β1 in human umbilical vein endothelial cells. J Biol Chem 277, 46248-46255  https://doi.org/10.1074/jbc.M209288200
  99. Inoki I, Shiomi T, Hashimoto G et al (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16, 1-27 
  100. Gao R and Brigstock DR (2004) Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin αvβ3 and heparan sulfate proteoglycan. J Biol Chem 279, 8848-8855 
  101. Lin CG, Leu SJ, Chen N et al (2003) CCN3 (NOV) Is a novel angiogenic regulator of the CCN protein family. J Biol Chem 278, 24200-24208  https://doi.org/10.1074/jbc.M302028200
  102. Desnoyers L, Arnott D and Pennica D (2001) WISP-1 binds to decorin and biglycan. J Biol Chem 276, 47599-47607  https://doi.org/10.1074/jbc.M108339200
  103. Myers RB, Wei L and Castellot JJ (2014) The matricellular protein CCN5 regulates podosome function via interaction with integrin αvβ3. J Cell Commun Signal 8, 135-146  https://doi.org/10.1007/s12079-013-0218-2
  104. Chen CC, Chen N and Lau LF (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276, 10443-10452  https://doi.org/10.1074/jbc.M008087200
  105. Kiwanuka E, Andersson L, Caterson EJ, Junker JPE, Gerdin B and Eriksson E (2013) CCN2 promotes keratinocyte adhesion and migration via integrin α5β1. Exp Cell Res 319, 2938-2946  https://doi.org/10.1016/j.yexcr.2013.08.021
  106. Ivkovic S, Yoon BS, Popoff SN et al (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130, 2779-2791  https://doi.org/10.1242/dev.00505
  107. Safadi FF, Xu J, Smock SL et al (2003) Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 196, 51-62  https://doi.org/10.1002/jcp.10319
  108. de Vega S, Iwamoto T, Nakamura T et al (2007) TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem 282, 30878-30888  https://doi.org/10.1074/jbc.M705847200
  109. Godyna S, Diaz-Ricart M and Argraves WS (1996) Fibulin-1 mediates platelet adhesion via a bridge of fibrinogen. Blood 88, 2569-2577  https://doi.org/10.1182/blood.V88.7.2569.bloodjournal8872569
  110. Ibrahim AM, Sabet S, El-Ghor AA et al (2018) Fibulin-2 is required for basement membrane integrity of mammary epithelium. Sci Rep 8, 14139 
  111. Tsuda T, Wang H, Timpl R and Chu ML (2001) Fibulin-2 expression marks transformed mesenchymal cells in developing cardiac valves, aortic arch vessels, and coronary vessels. Dev Dynam 222, 89-100  https://doi.org/10.1002/dvdy.1172
  112. McLaughlin PJ, Bakall B, Choi J et al (2007) Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice. Hum Mol Genet 16, 3059-3070  https://doi.org/10.1093/hmg/ddm264
  113. Kowal RC, Richardson JA, Miano JM and Olson EN (1999) EVEC, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circ Res 84, 1166-1176  https://doi.org/10.1161/01.RES.84.10.1166
  114. Ramnath NWM, Hawinkels LJAC, van Heijningen PM et al (2015) Fibulin-4 deficiency increases TGF-β signalling in aortic smooth muscle cells due to elevated TGF-β2 levels. Sci Rep 5, 16872 
  115. Chowdhury A, Herzog C, Hasselbach L et al (2014) Expression of fibulin-6 in failing hearts and its role for cardiac fibroblast migration. Cardiovasc Res 103, 509-520  https://doi.org/10.1093/cvr/cvu161
  116. Chakraborty P, Dash SP and Sarangi PP (2020) The role of adhesion protein fibulin7 in development and diseases. Mol Med 26, 47 
  117. Chen L, Ge Q, Black JL, Deng L, Burgess JK and Oliver BGG (2013) Differential regulation of extracellular matrix and soluble fibulin-1 levels by TGF-β1 in airway smooth muscle cells. PLoS One 8, e65544 
  118. Zhang H, Wu J, Dong H, Khan Shaukat A, Chu ML and Tsuda T (2013) Fibulin-2 deficiency attenuates angiotensin II-induced cardiac hypertrophy by reducing transforming growth factor- signalling. Clin Sci 126, 275-288 
  119. Hu B, Thirtamara-Rajamani KK, Sim H and Viapiano MS (2009) Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion. Mol Cancer Res 7, 1756-1770  https://doi.org/10.1158/1541-7786.MCR-09-0207
  120. Murtha LA, Hardy SA, Mabotuwana NS et al (2023) Fibulin-3 is necessary to prevent cardiac rupture following myocardial infarction. Sci Rep 13, 14995 
  121. Gallagher WM, Greene LM, Ryan MP et al (2001) Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues. FEBS Lett 489, 59-66  https://doi.org/10.1016/S0014-5793(00)02389-9
  122. Guadall A, Orriols M, Rodriguez-Calvo R et al (2011) Fibulin-5 is up-regulated by hypoxia in endothelial cells through a hypoxia-inducible factor-1 (HIF-1α)-dependent mechanism. J Biol Chem 286, 7093-7103  https://doi.org/10.1074/jbc.M110.162917
  123. de Vega S, Kondo A, Suzuki M et al (2019) Fibulin-7 is overexpressed in glioblastomas and modulates glioblastoma neovascularization through interaction with angiopoietin-1. Int J Cancer 145, 2157-2169  https://doi.org/10.1002/ijc.32306
  124. Tran H, VanDusen WJ and Argraves WS (1997) The self-association and fibronectin-binding sites of fibulin-1 map to calcium-binding epidermal growth factor-like domains. J Biol Chem 272, 22600-22606  https://doi.org/10.1074/jbc.272.36.22600
  125. Olin AI, Morgelin M, Sasaki T, Timpl R, Heinegard D and Aspberg A (2001) The proteoglycans aggrecan and versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem 276, 1253-1261  https://doi.org/10.1074/jbc.M006783200
  126. Reinhardt DP, Sasaki T, Dzamba BJ et al (1996) Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem 271, 19489-19496  https://doi.org/10.1074/jbc.271.32.19489
  127. Kobayashi N, Kostka G, Garbe JHO et al (2007) A comparative analysis of the fibulin protein family: biochemical characterization, binding interactions, and tissue localization. J Biol Chem 282, 11805-11816  https://doi.org/10.1074/jbc.M611029200
  128. Papke CL and Yanagisawa H (2014) Fibulin-4 and fibulin-5 in elastogenesis and beyond: insights from mouse and human studies. Matrix Biol 37, 142-149  https://doi.org/10.1016/j.matbio.2014.02.004
  129. Yanagisawa H, Schluterman MK and Brekken RA (2009) Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Comm Signal 3, 337-347 
  130. Zhang JL, Richetti S, Ramezani T et al (2022) Vertebrate extracellular matrix protein hemicentin-1 interacts physically and genetically with basement membrane protein nidogen-2. Matrix Biol 112, 132-154  https://doi.org/10.1016/j.matbio.2022.08.009
  131. Albig AR, Neil JR and Schiemann WP (2006) Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res 66, 2621-2629  https://doi.org/10.1158/0008-5472.CAN-04-4096
  132. Cooley MA, Kern CB, Fresco VM et al (2008) Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev Biol 319, 336-345  https://doi.org/10.1016/j.ydbio.2008.04.029
  133. Horiguchi M, Inoue T, Ohbayashi T et al (2009) Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci U S A 106, 19029-19034  https://doi.org/10.1073/pnas.0908268106
  134. Stein EV, Miller TW, Ivins-O'Keefe K, Kaur S and Roberts DD (2016) Secreted thrombospondin-1 regulates macrophage interleukin-1β production and activation through CD47. Sci Rep 6, 19684 
  135. Kong P, Gonzalez-Quesada C, Li N, Cavalera M, Lee DW and Frangogiannis NG (2013) Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am J Physiol Endocrinol Metab 305, E439-E450  https://doi.org/10.1152/ajpendo.00006.2013
  136. Shitaye HS, Terkhorn SP, Combs JA and Hankenson KD (2010) Thrombospondin-2 is an endogenous adipocyte inhibitor. Matrix Biol 29, 549-556  https://doi.org/10.1016/j.matbio.2010.05.006
  137. Manna PP and Frazier WA (2003) The mechanism of CD47-dependent killing of t cells: heterotrimeric Gidependent inhibition of protein kinase A1. J Immun 170, 3544-3553  https://doi.org/10.4049/jimmunol.170.7.3544
  138. Liu Z, Morgan S, Ren J et al (2015) Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm. Circ Res 117, 129-141  https://doi.org/10.1161/CIRCRESAHA.117.305262
  139. Bergstrom SE, Bergdahl E and Sundqvist KG (2013) A cytokine-controlled mechanism for integrated regulation of T-lymphocyte motility, adhesion and activation. Immunology 140, 441-455  https://doi.org/10.1111/imm.12154
  140. Doyen V, Rubio M, Braun D et al (2003) Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med 198, 1277-1283  https://doi.org/10.1084/jem.20030705
  141. Catalan V, Gomez-Ambrosi J, Rodriguez A et al (2012) Increased tenascin C and toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. J Clin Endocrinol Metab 97, E1880-E1889  https://doi.org/10.1210/jc.2012-1670
  142. Midwood K, Sacre S, Piccinini AM et al (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15, 774-780  https://doi.org/10.1038/nm.1987
  143. Murdamoothoo D, Sun Z, Yilmaz A et al (2021) Tenascin-C immobilizes infiltrating T lymphocytes through CXCL12 promoting breast cancer progression. EMBO Mol Med 13, e13270 
  144. Koguchi Y, Kawakami K, Uezu K et al (2003) High plasma osteopontin level and its relationship with interleukin-12-mediated type 1 T helper cell response in tuberculosis. Am J Respir Crit Care Med 167, 1355-1359  https://doi.org/10.1164/rccm.200209-1113OC
  145. Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H and Ashkar S (2002) Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leukoc Biol 72, 752-761  https://doi.org/10.1189/jlb.72.4.752
  146. Nomiyama T, Perez-Tilve D, Ogawa D et al (2007) Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest 117, 2877-2888  https://doi.org/10.1172/JCI31986
  147. Zeyda M, Gollinger K, Todoric J et al (2011) Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology 152, 2219-2227  https://doi.org/10.1210/en.2010-1328
  148. Ikeda T, Shirasawa T, Esaki Y, Yoshiki S and Hirokawa K (1993) Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest 92, 2814-2820  https://doi.org/10.1172/JCI116901
  149. Syn WK, Choi SS, Liaskou E et al (2011) Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology 53, 106-115  https://doi.org/10.1002/hep.23998
  150. Tartare-Deckert S, Chavey C, Monthouel MN, Gautier N and Van Obberghen E (2001) The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. J Biol Chem 276, 22231-22237  https://doi.org/10.1074/jbc.M010634200
  151. Kos K and Wilding JPH (2010) SPARC: a key player in the pathologies associated with obesity and diabetes. Nat Rev Endocrinol 6, 225-235  https://doi.org/10.1038/nrendo.2010.18
  152. Shen Y, Zhao Y, Yuan L et al (2014) SPARC is overexpressed in adipose tissues of diet-induced obese rats and causes insulin resistance in 3T3-L1 adipocytes. Acta Histochem 116, 158-166 
  153. Nie J and Sage EH (2009) SPARC inhibits adipogenesis by its enhancement of β-catenin signaling. J Biol Chem 284, 1279-1290 
  154. Bradshaw AD, Graves DC, Motamed K and Sage EH (2003) SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci U S A 100, 6045-6050  https://doi.org/10.1073/pnas.1030790100
  155. Ryu S, Sidorov S, Ravussin E et al (2022) The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 55, 1609-1626.e7  https://doi.org/10.1016/j.immuni.2022.07.007
  156. Ryu S, Spadaro O, Sidorov S et al (2023) Reduction of SPARC protects mice against NLRP3 inflammasome activation and obesity. J Clin Invest 133, e169173 
  157. Toba H, Bras LEdC, Baicu CF, Zile MR, Lindsey ML and Bradshaw AD (2015) Secreted protein acidic and rich in cysteine facilitates age-related cardiac inflammation and macrophage M1 polarization. Am J Physiol Cell Physiol 308, C972-C982  https://doi.org/10.1152/ajpcell.00402.2014
  158. Ju L, Sun Y, Xue H et al (2020) CCN1 promotes hepatic steatosis and inflammation in non-alcoholic steatohepatitis. Sci Rep 10, 3201 
  159. Bai T, Chen CC and Lau LF (2010) Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol 184, 3223-3232  https://doi.org/10.4049/jimmunol.0902792
  160. Imhof BA, Jemelin S, Ballet R et al (2016) CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A 113, E4847-4856 
  161. Tan JTM, McLennan SV, Williams PF et al (2013) Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am J Physiol Endocrinol Metab 304, E1291-E1302  https://doi.org/10.1152/ajpendo.00654.2012
  162. Spencer M, Yao-Borengasser A, Unal R et al (2010) Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab 299, E1016-E1027  https://doi.org/10.1152/ajpendo.00329.2010
  163. Rodrigues-Diez R, Rodrigues-Diez RR, Rayego-Mateos S et al (2013) The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. Lab Invest 93, 812-824  https://doi.org/10.1038/labinvest.2013.67
  164. Pakradouni J, Le Goff W, Calmel C et al (2013) Plasma NOV/CCN3 levels are closely associated with obesity in patients with metabolic disorders. PLoS One 8, e66788 
  165. Martinerie C, Garcia M, Do TTH et al (2016) NOV/CCN3: a new adipocytokine involved in obesity-associated insulin resistance. Diabetes 65, 2502-2515  https://doi.org/10.2337/db15-0617
  166. Akashi S, Nishida T, El-Seoudi A, Takigawa M, Iida S and Kubota S (2018) Metabolic regulation of the CCN family genes by glycolysis in chondrocytes. J Cell Commun Signal 12, 245-252 
  167. Ferrand N, Bereziat V, Moldes M, Zaoui M, Larsen AK and Sabbah M (2017) WISP1/CCN4 inhibits adipocyte differentiation through repression of PPARγ activity. Sci Rep 7, 1749 
  168. Holmager P, Egstrup M, Gustafsson I et al (2017) Galectin-3 and fibulin-1 in systolic heart failure - relation to glucose metabolism and left ventricular contractile reserve. BMC Cardiovasc Disord 17, 22 
  169. Skov V, Cangemi C, Gram J et al (2014) Metformin, but not rosiglitazone, attenuates the increasing plasma levels of a new cardiovascular marker, fibulin-1, in patients with type 2 diabetes. Diabetes Care 37, 760-766  https://doi.org/10.2337/dc13-1022
  170. Nadler ST, Stoehr JP, Schueler KL, Tanimoto G, Yandell BS and Attie AD (2000) The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci U S A 97, 11371-11376  https://doi.org/10.1073/pnas.97.21.11371
  171. Li S, Jiang H, Wang S et al (2023) Fibulin-2: a potential regulator of immune dysfunction after bone trauma. Immun Inflamm Dis 11, e846 
  172. Runhaar J, Sanchez C, Taralla S, Henrotin Y and Bierma-Zeinstra SMA (2016) Fibulin-3 fragments are prognostic biomarkers of osteoarthritis incidence in overweight and obese women. Osteoarthr Cartil 24, 672-678  https://doi.org/10.1016/j.joca.2015.10.013
  173. Lau ES, Paniagua SM, Zarbafian S et al (2021) Cardiovascular biomarkers of obesity and overlap with cardio-metabolic dysfunction. J Am Heart Assoc 10, e020215 
  174. Okuyama T, Shirakawa J, Yanagisawa H et al (2017) Identification of the matricellular protein Fibulin-5 as a target molecule of glucokinase-mediated calcineurin/NFAT signaling in pancreatic islets. Sci Rep 7, 2364 
  175. Chu LY, Ramakrishnan DP and Silverstein RL (2013) Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood 122, 1822-1832 
  176. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J and Iruela-Arispe ML (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98, 12485-12490  https://doi.org/10.1073/pnas.171460498
  177. Streit M, Velasco P, Riccardi L et al (2000) Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J 19, 3272-3282  https://doi.org/10.1093/emboj/19.13.3272
  178. Kyriakides TR, Zhu YH, Smith LT et al (1998) Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 140, 419-430  https://doi.org/10.1083/jcb.140.2.419
  179. Hecht JT, Nelson LD, Crowder E et al (1995) Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet 10, 325-329  https://doi.org/10.1038/ng0795-325
  180. Midwood KS, Hussenet T, Langlois B and Orend G (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68, 3175-3199  https://doi.org/10.1007/s00018-011-0783-6
  181. Tamaoki M, Imanaka-Yoshida K, Yokoyama K et al (2005) Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 167, 71-80 
  182. Matsuda A, Yoshiki A, Tagawa Y, Matsuda H and Kusakabe M (1999) Corneal wound healing in tenascin knockout mouse. Invest Ophthalmol Vis Sci 40, 1071-1080 
  183. Imanaka-Yoshida K, Yoshida T and Miyagawa-Tomita S (2014) Tenascin-C in development and disease of blood vessels. Anat Rec 297, 1747-1757  https://doi.org/10.1002/ar.22985
  184. Zweers MC, Bristow J, Steijlen PM et al (2003) Haploinsufficiency of TNXB is associated with hypermobility type of ehlers-danlos syndrome. Am J Hum Genet 73, 214-217  https://doi.org/10.1086/376564
  185. Icer MA and Gezmen-Karadag M (2018) The multiple functions and mechanisms of osteopontin. Clin Biochem 59, 17-24  https://doi.org/10.1016/j.clinbiochem.2018.07.003
  186. Ross FP, Chappel J, Alvarez JI et al (1993) Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem 268, 9901-9907  https://doi.org/10.1016/S0021-9258(18)98430-9
  187. Wang W, Li P, Li W et al (2017) Osteopontin activates mesenchymal stem cells to repair skin wound. PLoS One 12, e0185346 
  188. Gao H, Steffen MC and Ramos KS (2012) Osteopontin regulates -smooth muscle actin and calponin in vascular smooth muscle cells. Cell Biol Int 36, 155-161 
  189. Riew TR, Kim S, Jin X, Kim HL, Lee JH and Lee MY (2019) Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J Neuroinflamm 16, 99 
  190. Norose K, Clark JI, Syed NA et al (1998) SPARC deficiency leads to early-onset cataractogenesis. Invest Ophthalmol Vis Sci 39, 2674-2680 
  191. Rentz TJ, Poobalarahi F, Bornstein P, Sage EH and Bradshaw AD (2007) SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem 282, 22062-22071  https://doi.org/10.1074/jbc.M700167200
  192. Reed MJ, Puolakkainen P, Lane TF, Dickerson D, Bornstein P and Sage EH (1993) Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem 41, 1467-1477  https://doi.org/10.1177/41.10.8245406
  193. Kucukdereli H, Allen NJ, Lee AT et al (2011) Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A 108, E440-E449 
  194. Chaurasia SS, Perera PR, Poh R, Lim RR, Wong TT and Mehta JS (2013) Hevin plays a pivotal role in corneal wound healing. PLoS One 8, e81544 
  195. Chen CC and Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41, 771-783  https://doi.org/10.1016/j.biocel.2008.07.025
  196. Jun JI and Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12, 676-685  https://doi.org/10.1038/ncb2070
  197. Tsang M and Leask A (2015) CCN2 is required for recruitment of Sox2-expressing cells during cutaneous tissue repair. J Cell Commun Signal 9, 341-346  https://doi.org/10.1007/s12079-014-0245-7
  198. Lin CG, Chen CC, Leu SJ, Grzeszkiewicz TM and Lau LF (2005) Integrin-dependent functions of the angiogenic inducer NOV (CCN3): implication in wound healing. J Biol Chem 280, 8229-8237  https://doi.org/10.1074/jbc.M404903200
  199. Ono M, Masaki A, Maeda A et al (2018) CCN4/WISP1 controls cutaneous wound healing by modulating proliferation, migration and ECM expression in dermal fibroblasts via α5β1 and TNFα. Matrix Biol 68-69, 533-546  https://doi.org/10.1016/j.matbio.2018.01.004
  200. Argraves WS, Tran H, Burgess WH and Dickerson K (1990) Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure. J Cell Biol 111, 3155-3164  https://doi.org/10.1083/jcb.111.6.3155
  201. Balbona K, Tran H, Godyna S, Ingham KC, Strickland DK and Argraves WS (1992) Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin. J Biol Chem 267, 20120-20125  https://doi.org/10.1016/S0021-9258(19)88674-X
  202. Yasmin, Maskari RA, McEniery CM et al (2018) The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness. Sci Rep 8, 8550 
  203. Li SD, Xing W, Wang SC et al (2023) Fibulin2: a negative regulator of BMSC osteogenic differentiation in infected bone fracture healing. Exp Mol Med 55, 443-456  https://doi.org/10.1038/s12276-023-00942-0
  204. Lin Z, Wang Z, Li G, Li B, Xie W and Xiang D (2016) Fibulin-3 may improve vascular health through inhibition of MMP-2/9 and oxidative stress in spontaneously hypertensive rats. Mol Med Rep 13, 3805-3812  https://doi.org/10.3892/mmr.2016.5036
  205. Gerarduzzi C, Hartmann U, Leask A and Drobetsky E (2020) The matrix revolution: matricellular proteins and restructuring of the cancer microenvironment. Cancer Res 80, 2705-2717 
  206. Prakoura N and Chatziantoniou C (2017) Matricellular proteins and organ fibrosis. Curr Pathobiol Rep 5, 111-121  https://doi.org/10.1007/s40139-017-0138-6