DOI QR코드

DOI QR Code

Nuclear structures and their emerging roles in cell differentiation and development

  • Hye Ji Cha (Department of Biomedical Science & Engineering, Dankook University)
  • 투고 : 2024.06.21
  • 심사 : 2024.07.31
  • 발행 : 2024.09.30

초록

The nucleus, a highly organized and dynamic organelle, plays a crucial role in regulating cellular processes. During cell differentiation, profound changes occur in gene expression, chromatin organization, and nuclear morphology. This review explores the intricate relationship between nuclear architecture and cellular function, focusing on the roles of the nuclear lamina, nuclear pore complexes (NPCs), sub-nuclear bodies, and the nuclear scaffold. These components collectively maintain nuclear integrity, organize chromatin, and interact with key regulatory factors. The dynamic remodeling of chromatin, its interactions with nuclear structures, and epigenetic modifications work in concert to modulate gene accessibility and ensure precise spatiotemporal control of gene expression. The nuclear lamina stabilizes nuclear shape and is associated with inactive chromatin regions, while NPCs facilitate selective transport. Sub-nuclear bodies contribute to genome organization and gene regulation, often by influencing RNA processing. The nuclear scaffold provides structural support, impacting 3D genome organization, which is crucial for proper gene expression during differentiation. This review underscores the significance of nuclear architecture in regulating gene expression and guiding cell differentiation. Further investigation into nuclear structure and 3D genome organization will deepen our understanding of the mechanisms governing cell fate determination.

키워드

과제정보

The present research was supported by the research fund of Dankook University in 2023.

참고문헌

  1. Raices M and D'Angelo MA (2017) Nuclear pore complexes and regulation of gene expression. Curr Opin Cell Biol 46, 26-32  https://doi.org/10.1016/j.ceb.2016.12.006
  2. Strambio-De-Castillia C, Niepel M and Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11, 490-501  https://doi.org/10.1038/nrm2928
  3. Kabachinski G and Schwartz TU (2015) The nuclear pore complex - structure and function at a glance. J Cell Sci 128, 423-429  https://doi.org/10.1242/jcs.083246
  4. Luperchio TR, Wong X and Reddy KL (2014) Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr Opin Genet Dev 25, 50-61  https://doi.org/10.1016/j.gde.2013.11.021
  5. Wong X, Melendez-Perez AJ and Reddy KL (2022) The nuclear lamina. Cold Spring Harb Perspect Biol 14, a040113 
  6. Sleeman JE and Trinkle-Mulcahy L (2014) Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr Opin Cell Biol 28, 76-83  https://doi.org/10.1016/j.ceb.2014.03.004
  7. Spector DL and Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3, 1-12 
  8. Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16, 273-300  https://doi.org/10.1146/annurev.cellbio.16.1.273
  9. Faber GP, Nadav-Eliyahu S and Shav-Tal Y (2022) Nuclear speckles - a driving force in gene expression. J Cell Sci 135, jcs259594 
  10. Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3, 1-15 
  11. Hampoelz B and Lecuit T (2011) Nuclear mechanics in differentiation and development. Curr Opin Cell Biol 23, 668-675  https://doi.org/10.1016/j.ceb.2011.10.001
  12. Khan AU, Qu R, Ouyang J and Dai J (2020) Role of nucleoporins and transport receptors in cell differentiation. Front Physiol 11, 1-12 
  13. Arias Escayola D and Neugebauer KM (2018) Dynamics and function of nuclear bodies during embryogenesis. Biochemistry 57, 2462-2469  https://doi.org/10.1021/acs.biochem.7b01262
  14. D'Angelo MA, Gomez-Cavazos JS, Mei A, Lackner DH and Hetzer MW (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22, 446-458  https://doi.org/10.1016/j.devcel.2011.11.021
  15. Grosch M, Ittermann S, Shaposhnikov D and Drukker M (2020) Chromatin-associated membraneless organelles in regulation of cellular differentiation. Stem Cell Reports 15, 1220-1232  https://doi.org/10.1016/j.stemcr.2020.10.011
  16. Li E and Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6, a019133 
  17. Torchy MP, Hamiche A and Klaholz BP (2015) Structure and function insights into the NuRD chromatin remodeling complex. Cell Mol Life Sci 72, 2491-2507  https://doi.org/10.1007/s00018-015-1880-8
  18. Centore RC, Sandoval GJ, Soares LMM, Kadoch C and Chan HM (2020) Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet 36, 936-950  https://doi.org/10.1016/j.tig.2020.07.011
  19. Cha HJ, Uyan O, Kai Y et al (2021) Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture. Nat Commun 12, 6241 
  20. Liu T, Zhu Q, Kai Y et al (2024) Matrin3 mediates differentiation through stabilizing chromatin loop-domain interactions and YY1 mediated enhancer-promoter interactions. Nat Commun 15, 1-18 
  21. Schreiber KH and Kennedy BK (2013) When lamins go bad: nuclear structure and disease. Cell 152, 1365-1375  https://doi.org/10.1016/j.cell.2013.02.015
  22. Malik AM, Miguez RA, Li X, Ho YS, Feldman EL and Barmada SJ (2018) Matrin 3-dependent neurotoxicity is modified by nucleic acid binding and nucleocytoplasmic localization. Elife 7, 1-30 
  23. Skowronska-Krawczyk D, Ma Q, Schwartz M et al (2014) Required enhancer-matrin-3 network interactions for a homeodomain transcription program. Nature 514, 257-261  https://doi.org/10.1038/nature13573
  24. Machyna M, Heyn P and Neugebauer KM (2013) Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 4, 17-34  https://doi.org/10.1002/wrna.1139
  25. Galganski L, Urbanek MO and Krzyzosiak WJ (2017) Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 45, 10350-10368  https://doi.org/10.1093/nar/gkx759
  26. Corpet A, Kleijwegt C, Roubille S et al (2020) Survey and summary PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 48, 11890-11912  https://doi.org/10.1093/nar/gkaa828
  27. Lallemand-Breitenbach V and de The H (2018) PML nuclear bodies: from architecture to function. Curr Opin Cell Biol 52, 154-161  https://doi.org/10.1016/j.ceb.2018.03.011
  28. Pombo A and Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16, 245-257  https://doi.org/10.1038/nrm3965
  29. Ghosh RP and Meyer BJ (2021) Spatial organization of chromatin: emergence of chromatin structure during development. Annu Rev Cell Dev Biol 37, 199-232  https://doi.org/10.1146/annurev-cellbio-032321-035734
  30. Schneider R and Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21, 3027-3043  https://doi.org/10.1101/gad.1604607
  31. Smith ER, Meng Y, Moore R, Tse JD, Xu AG and Xu XX (2017) Nuclear envelope structural proteins facilitate nuclear shape changes accompanying embryonic differentiation and fidelity of gene expression. BMC Cell Biol 18, 1-14  https://doi.org/10.1186/s12860-016-0124-6
  32. van Steensel B and Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780-791  https://doi.org/10.1016/j.cell.2017.04.022
  33. Andres V and Gonzalez JM (2009) Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 187, 945-957  https://doi.org/10.1083/jcb.200904124
  34. Pope BD, Ryba T, Dileep V et al (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402-405  https://doi.org/10.1038/nature13986
  35. Tsai MY, Wang S, Heidinger JM et al (2006) A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 1887-1893  https://doi.org/10.1126/science.1122771
  36. Poleshko A, Shah PP, Gupta M et al (2017) Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell 171, 573-587.e14.  https://doi.org/10.1016/j.cell.2017.09.018
  37. Peric-Hupkes D, Meuleman W, Pagie L et al (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38, 603-613  https://doi.org/10.1016/j.molcel.2010.03.016
  38. Yao J, Fetter RD, Hu P, Betzig E and Tjian R (2011) Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev 25, 569-580  https://doi.org/10.1101/gad.2021411
  39. Reddy KL, Zullo JM, Bertolino E and Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243-247  https://doi.org/10.1038/nature06727
  40. Beck M and Hurt E (2017) The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 18, 73-89  https://doi.org/10.1038/nrm.2016.147
  41. Light WH, Freaney J, Sood V et al (2013) A conserved role for human nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 11, e1001524 
  42. Jacinto FV, Benner C and Hetzer MW (2015) The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev 29, 1224-1238  https://doi.org/10.1101/gad.260919.115
  43. Pascual-Garcia P, Jeong J and Capelson M (2014) Nucleoporin Nup98 associates with Trx/MLL and NSL histonemodifying complexes and regulates Hox gene expression. Cell Rep 9, 433-442  https://doi.org/10.1016/j.celrep.2014.09.002
  44. Brickner JH (2009) Transcriptional memory at the nuclear periphery. Curr Opin Cell Biol 21127-21133 
  45. Casolari JM, Brown CR, Komili S, West J, Hieronymus H and Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427-439  https://doi.org/10.1016/S0092-8674(04)00448-9
  46. Taddei A, Van Houwe G, Hediger F et al (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774-778  https://doi.org/10.1038/nature04845
  47. Brickner DG, Cajigas I, Fondufe-Mittendorf Y et al (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5, 704-716 
  48. Liu E, Gordonov S, Treiser MD and Moghe PV (2010) Parsing the early cytoskeletal and nuclear organizational cues that demarcate stem cell lineages. Cell Cycle 9, 2108-2117  https://doi.org/10.4161/cc.9.11.11864
  49. Yasuhara N, Shibazaki N, Tanaka S et al (2007) Triggering neural differentiation of ES cells by subtype switching of importin-α. Nat Cell Biol 9, 72-79  https://doi.org/10.1038/ncb1521
  50. Morris GE (2008) The cajal body. Biochim Biophys Acta - Mol Cell Res 1783, 2108-2115  https://doi.org/10.1016/j.bbamcr.2008.07.016
  51. Bernardi R and Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8, 1006-1016  https://doi.org/10.1038/nrm2277
  52. Lallemand-Breitenbach V and de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2, a000661 
  53. Gupta S and Santoro R (2020) Regulation and roles of the nucleolus in embryonic stem cells: from ribosome biogenesis to genome organization. Stem Cell Reports 15, 1206-1219  https://doi.org/10.1016/j.stemcr.2020.08.012
  54. Jevtic P, Edens LJ, Vukovic LD and Ley DL (2014) Sizing and shaping the nucleus: mechanisms and significanc. Curr Opin Cell Biol 28, 16-27  https://doi.org/10.1016/j.ceb.2014.01.003
  55. Meshorer E and Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7, 540-546  https://doi.org/10.1038/nrm1938
  56. Flenghi L, Fagioli M, Tomassoni L et al (1995) Characterization of a new monoclonal antibody (PG-M3) directed against the aminoterminal portion of the PML gene product: immunocytochemical evidence for high expression of PML proteins on activated macrophages, endothelial cells, and epithelia. Blood 85, 1871-1880  https://doi.org/10.1182/blood.V85.7.1871.bloodjournal8571871
  57. Lehman BJ, Lopez-Diaz FJ, Santisakultarm TP et al (2021) Dynamic regulation of CTCF stability and subnuclear localization in response to stress. PLoS Genetics 17, 1-34 
  58. Nelson WG, Pienta KJ, Barrack ER and Coffey DS (1986) The role of the nuclear matrix in the organization and function of DNA. Annu Rev Biophys Biophys Chem 15, 457-475  https://doi.org/10.1146/annurev.bb.15.060186.002325
  59. Verheijen R, van Venrooij W and Ramaekers F (1988) The nuclear matrix: structure and composition. J Cell Sci 90, 11-36  https://doi.org/10.1242/jcs.90.1.11
  60. Boulikas T (1993) Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J Cell Biochem 52, 14-22  https://doi.org/10.1002/jcb.240520104
  61. Albrethsen J, Knol JC and Jimenez CR (2009) Unravelling the nuclear matrix proteome. J Proteomics 72, 71-81  https://doi.org/10.1016/j.jprot.2008.09.005
  62. Nakayasu H and Berezney R (1991) Nuclear matrins: identification of the major nuclear matrix proteins. Proc Natl Acad Sci U S A 88, 10312-10316  https://doi.org/10.1073/pnas.88.22.10312
  63. Fenelon KD and Hopyan S (2017) Structural components of nuclear integrity with gene regulatory potential. Curr Opin Cell Biol 48, 63-71  https://doi.org/10.1016/j.ceb.2017.06.001
  64. Coelho MB, Attig J, Bellora N et al (2015) Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB. EMBO J 34, 653-668  https://doi.org/10.15252/embj.201489852
  65. Johnson JO, Pioro EP, Boehringer A et al (2014) Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17, 664-666  https://doi.org/10.1038/nn.3688
  66. Malyavantham KS, Bhattacharya S, Barbeitos et al (2008) Identifying functional neighborhoods within the cell nucleus: proximity analysis of early S-phase replicating chromatin domains to sites of transcription, RNA polymerase II, HP1γ, Matrin 3 and SAF-A. J Cell Biochem 105, 391-403  https://doi.org/10.1002/jcb.21834
  67. Pandya-Jones A, Markaki Y, Serizay J et al (2020) A protein assembly mediates Xist localization and gene silencing. Nature 587, 145-151  https://doi.org/10.1038/s41586-020-2703-0
  68. Marenda M, Lazarova E and Gilbert N (2022) The role of SAF-A/hnRNP U in regulating chromatin structure. Curr Opin Genet Dev 72, 38-44  https://doi.org/10.1016/j.gde.2021.10.008
  69. Huo X, Ji L, Zhang Y et al (2020) The nuclear matrix protein safb cooperates with major satellite rnas to stabilize heterochromatin architecture partially through phase separation. Mol Cell 77, 368-383.e7  https://doi.org/10.1016/j.molcel.2019.10.001
  70. Niimori-Kita K, Tamamaki N, Koizumi D and Niimori D (2018) Matrin-3 is essential for fibroblast growth factor 2-dependent maintenance of neural stem cells. Sci Rep 8, 1-10