Acknowledgement
The present research was supported by the research fund of Dankook University in 2023.
References
- Raices M and D'Angelo MA (2017) Nuclear pore complexes and regulation of gene expression. Curr Opin Cell Biol 46, 26-32 https://doi.org/10.1016/j.ceb.2016.12.006
- Strambio-De-Castillia C, Niepel M and Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11, 490-501 https://doi.org/10.1038/nrm2928
- Kabachinski G and Schwartz TU (2015) The nuclear pore complex - structure and function at a glance. J Cell Sci 128, 423-429 https://doi.org/10.1242/jcs.083246
- Luperchio TR, Wong X and Reddy KL (2014) Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr Opin Genet Dev 25, 50-61 https://doi.org/10.1016/j.gde.2013.11.021
- Wong X, Melendez-Perez AJ and Reddy KL (2022) The nuclear lamina. Cold Spring Harb Perspect Biol 14, a040113
- Sleeman JE and Trinkle-Mulcahy L (2014) Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr Opin Cell Biol 28, 76-83 https://doi.org/10.1016/j.ceb.2014.03.004
- Spector DL and Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3, 1-12
- Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16, 273-300 https://doi.org/10.1146/annurev.cellbio.16.1.273
- Faber GP, Nadav-Eliyahu S and Shav-Tal Y (2022) Nuclear speckles - a driving force in gene expression. J Cell Sci 135, jcs259594
- Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3, 1-15
- Hampoelz B and Lecuit T (2011) Nuclear mechanics in differentiation and development. Curr Opin Cell Biol 23, 668-675 https://doi.org/10.1016/j.ceb.2011.10.001
- Khan AU, Qu R, Ouyang J and Dai J (2020) Role of nucleoporins and transport receptors in cell differentiation. Front Physiol 11, 1-12
- Arias Escayola D and Neugebauer KM (2018) Dynamics and function of nuclear bodies during embryogenesis. Biochemistry 57, 2462-2469 https://doi.org/10.1021/acs.biochem.7b01262
- D'Angelo MA, Gomez-Cavazos JS, Mei A, Lackner DH and Hetzer MW (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22, 446-458 https://doi.org/10.1016/j.devcel.2011.11.021
- Grosch M, Ittermann S, Shaposhnikov D and Drukker M (2020) Chromatin-associated membraneless organelles in regulation of cellular differentiation. Stem Cell Reports 15, 1220-1232 https://doi.org/10.1016/j.stemcr.2020.10.011
- Li E and Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6, a019133
- Torchy MP, Hamiche A and Klaholz BP (2015) Structure and function insights into the NuRD chromatin remodeling complex. Cell Mol Life Sci 72, 2491-2507 https://doi.org/10.1007/s00018-015-1880-8
- Centore RC, Sandoval GJ, Soares LMM, Kadoch C and Chan HM (2020) Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet 36, 936-950 https://doi.org/10.1016/j.tig.2020.07.011
- Cha HJ, Uyan O, Kai Y et al (2021) Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture. Nat Commun 12, 6241
- Liu T, Zhu Q, Kai Y et al (2024) Matrin3 mediates differentiation through stabilizing chromatin loop-domain interactions and YY1 mediated enhancer-promoter interactions. Nat Commun 15, 1-18
- Schreiber KH and Kennedy BK (2013) When lamins go bad: nuclear structure and disease. Cell 152, 1365-1375 https://doi.org/10.1016/j.cell.2013.02.015
- Malik AM, Miguez RA, Li X, Ho YS, Feldman EL and Barmada SJ (2018) Matrin 3-dependent neurotoxicity is modified by nucleic acid binding and nucleocytoplasmic localization. Elife 7, 1-30
- Skowronska-Krawczyk D, Ma Q, Schwartz M et al (2014) Required enhancer-matrin-3 network interactions for a homeodomain transcription program. Nature 514, 257-261 https://doi.org/10.1038/nature13573
- Machyna M, Heyn P and Neugebauer KM (2013) Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 4, 17-34 https://doi.org/10.1002/wrna.1139
- Galganski L, Urbanek MO and Krzyzosiak WJ (2017) Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 45, 10350-10368 https://doi.org/10.1093/nar/gkx759
- Corpet A, Kleijwegt C, Roubille S et al (2020) Survey and summary PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 48, 11890-11912 https://doi.org/10.1093/nar/gkaa828
- Lallemand-Breitenbach V and de The H (2018) PML nuclear bodies: from architecture to function. Curr Opin Cell Biol 52, 154-161 https://doi.org/10.1016/j.ceb.2018.03.011
- Pombo A and Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16, 245-257 https://doi.org/10.1038/nrm3965
- Ghosh RP and Meyer BJ (2021) Spatial organization of chromatin: emergence of chromatin structure during development. Annu Rev Cell Dev Biol 37, 199-232 https://doi.org/10.1146/annurev-cellbio-032321-035734
- Schneider R and Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21, 3027-3043 https://doi.org/10.1101/gad.1604607
- Smith ER, Meng Y, Moore R, Tse JD, Xu AG and Xu XX (2017) Nuclear envelope structural proteins facilitate nuclear shape changes accompanying embryonic differentiation and fidelity of gene expression. BMC Cell Biol 18, 1-14 https://doi.org/10.1186/s12860-016-0124-6
- van Steensel B and Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780-791 https://doi.org/10.1016/j.cell.2017.04.022
- Andres V and Gonzalez JM (2009) Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 187, 945-957 https://doi.org/10.1083/jcb.200904124
- Pope BD, Ryba T, Dileep V et al (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402-405 https://doi.org/10.1038/nature13986
- Tsai MY, Wang S, Heidinger JM et al (2006) A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 1887-1893 https://doi.org/10.1126/science.1122771
- Poleshko A, Shah PP, Gupta M et al (2017) Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell 171, 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018
- Peric-Hupkes D, Meuleman W, Pagie L et al (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38, 603-613 https://doi.org/10.1016/j.molcel.2010.03.016
- Yao J, Fetter RD, Hu P, Betzig E and Tjian R (2011) Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev 25, 569-580 https://doi.org/10.1101/gad.2021411
- Reddy KL, Zullo JM, Bertolino E and Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243-247 https://doi.org/10.1038/nature06727
- Beck M and Hurt E (2017) The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 18, 73-89 https://doi.org/10.1038/nrm.2016.147
- Light WH, Freaney J, Sood V et al (2013) A conserved role for human nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 11, e1001524
- Jacinto FV, Benner C and Hetzer MW (2015) The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev 29, 1224-1238 https://doi.org/10.1101/gad.260919.115
- Pascual-Garcia P, Jeong J and Capelson M (2014) Nucleoporin Nup98 associates with Trx/MLL and NSL histonemodifying complexes and regulates Hox gene expression. Cell Rep 9, 433-442 https://doi.org/10.1016/j.celrep.2014.09.002
- Brickner JH (2009) Transcriptional memory at the nuclear periphery. Curr Opin Cell Biol 21127-21133
- Casolari JM, Brown CR, Komili S, West J, Hieronymus H and Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427-439 https://doi.org/10.1016/S0092-8674(04)00448-9
- Taddei A, Van Houwe G, Hediger F et al (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774-778 https://doi.org/10.1038/nature04845
- Brickner DG, Cajigas I, Fondufe-Mittendorf Y et al (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5, 704-716
- Liu E, Gordonov S, Treiser MD and Moghe PV (2010) Parsing the early cytoskeletal and nuclear organizational cues that demarcate stem cell lineages. Cell Cycle 9, 2108-2117 https://doi.org/10.4161/cc.9.11.11864
- Yasuhara N, Shibazaki N, Tanaka S et al (2007) Triggering neural differentiation of ES cells by subtype switching of importin-α. Nat Cell Biol 9, 72-79 https://doi.org/10.1038/ncb1521
- Morris GE (2008) The cajal body. Biochim Biophys Acta - Mol Cell Res 1783, 2108-2115 https://doi.org/10.1016/j.bbamcr.2008.07.016
- Bernardi R and Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8, 1006-1016 https://doi.org/10.1038/nrm2277
- Lallemand-Breitenbach V and de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2, a000661
- Gupta S and Santoro R (2020) Regulation and roles of the nucleolus in embryonic stem cells: from ribosome biogenesis to genome organization. Stem Cell Reports 15, 1206-1219 https://doi.org/10.1016/j.stemcr.2020.08.012
- Jevtic P, Edens LJ, Vukovic LD and Ley DL (2014) Sizing and shaping the nucleus: mechanisms and significanc. Curr Opin Cell Biol 28, 16-27 https://doi.org/10.1016/j.ceb.2014.01.003
- Meshorer E and Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7, 540-546 https://doi.org/10.1038/nrm1938
- Flenghi L, Fagioli M, Tomassoni L et al (1995) Characterization of a new monoclonal antibody (PG-M3) directed against the aminoterminal portion of the PML gene product: immunocytochemical evidence for high expression of PML proteins on activated macrophages, endothelial cells, and epithelia. Blood 85, 1871-1880 https://doi.org/10.1182/blood.V85.7.1871.bloodjournal8571871
- Lehman BJ, Lopez-Diaz FJ, Santisakultarm TP et al (2021) Dynamic regulation of CTCF stability and subnuclear localization in response to stress. PLoS Genetics 17, 1-34
- Nelson WG, Pienta KJ, Barrack ER and Coffey DS (1986) The role of the nuclear matrix in the organization and function of DNA. Annu Rev Biophys Biophys Chem 15, 457-475 https://doi.org/10.1146/annurev.bb.15.060186.002325
- Verheijen R, van Venrooij W and Ramaekers F (1988) The nuclear matrix: structure and composition. J Cell Sci 90, 11-36 https://doi.org/10.1242/jcs.90.1.11
- Boulikas T (1993) Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J Cell Biochem 52, 14-22 https://doi.org/10.1002/jcb.240520104
- Albrethsen J, Knol JC and Jimenez CR (2009) Unravelling the nuclear matrix proteome. J Proteomics 72, 71-81 https://doi.org/10.1016/j.jprot.2008.09.005
- Nakayasu H and Berezney R (1991) Nuclear matrins: identification of the major nuclear matrix proteins. Proc Natl Acad Sci U S A 88, 10312-10316 https://doi.org/10.1073/pnas.88.22.10312
- Fenelon KD and Hopyan S (2017) Structural components of nuclear integrity with gene regulatory potential. Curr Opin Cell Biol 48, 63-71 https://doi.org/10.1016/j.ceb.2017.06.001
- Coelho MB, Attig J, Bellora N et al (2015) Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB. EMBO J 34, 653-668 https://doi.org/10.15252/embj.201489852
- Johnson JO, Pioro EP, Boehringer A et al (2014) Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17, 664-666 https://doi.org/10.1038/nn.3688
- Malyavantham KS, Bhattacharya S, Barbeitos et al (2008) Identifying functional neighborhoods within the cell nucleus: proximity analysis of early S-phase replicating chromatin domains to sites of transcription, RNA polymerase II, HP1γ, Matrin 3 and SAF-A. J Cell Biochem 105, 391-403 https://doi.org/10.1002/jcb.21834
- Pandya-Jones A, Markaki Y, Serizay J et al (2020) A protein assembly mediates Xist localization and gene silencing. Nature 587, 145-151 https://doi.org/10.1038/s41586-020-2703-0
- Marenda M, Lazarova E and Gilbert N (2022) The role of SAF-A/hnRNP U in regulating chromatin structure. Curr Opin Genet Dev 72, 38-44 https://doi.org/10.1016/j.gde.2021.10.008
- Huo X, Ji L, Zhang Y et al (2020) The nuclear matrix protein safb cooperates with major satellite rnas to stabilize heterochromatin architecture partially through phase separation. Mol Cell 77, 368-383.e7 https://doi.org/10.1016/j.molcel.2019.10.001
- Niimori-Kita K, Tamamaki N, Koizumi D and Niimori D (2018) Matrin-3 is essential for fibroblast growth factor 2-dependent maintenance of neural stem cells. Sci Rep 8, 1-10