Acknowledgement
This research was supported by 2024 Baekseok University research fund.
References
- Goldwasser, S., Micali, S., & Rackoff, C. (1985). The knowledge complexity of interactive proof systems. SIAM Journal on Computing, 14(4), 397-429. DOI : 10.1137/0218012
- Peeters, R. (2020). Zero-knowledge proofs: A primer. arXiv preprint arXiv:2004.07523. https://arxiv.org/abs/2301.02161
- Brassard, G., & Auclair, M. (1993). A simple and secure way to do computations on integers in the presence of an adversary. In Advances in Cryptology?CRYPTO'93 (pp. 201-212). Springer, Berlin, Heidelberg. https://arxiv.org/pdf/2401.09277
- Blum, M., & Feldman, L. (1984). The canonical form for zero-knowledge proofs. In Advances in Cryptology?CRYPTO'84 (pp. 41-56). Springer, Berlin, Heidelberg. https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
- Fiat, U., & Shamir, A. (1986). How to prove yourself a liar without revealing any other secret. In Advances in Cryptology?EUROCRYPT'86 (pp. 206-221). Springer, Berlin, Heidelberg. https://www.sciencedirect.com/science/article/pii/S0306457322003296
- Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography. Cambridge University Press . http://staff.ustc.edu.cn/~mfy/moderncrypto/reading%20materials/Introduction_to_Modern_Cryptography.pdf
- Ben-Sasson, E., Chiesa, M., Genkin, D., Kristjansen, E., & Roos, A. (2013). Scalable transparent proof of knowledge systems. In Cryptology (CRYPTO 2013) (pp. 487-508). Springer, Berlin, Heidelberg. https://eprint.iacr.org/2018/046.pdf
- Bunz, B., Bootle, J., Lindqvist, A., & Groth, D. (2018). Transparent proofs of partial knowledge. In Theory of Cryptography (TCC 2018) (Part I) (pp. 313-344). Springer, Cham. https://link.springer.com/chapter/10.1007/3-540-48658-5_19
- Kiayias, A., & Apostolakos, I. (2014). Zero-knowledge proofs of knowledge for bitcoin transactions. In Financial Cryptography and Data Security (pp. 283-300). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-031-33386-6_6
- Gentry, C., Gentry, R., & Halevi, S. (2015). Secure multi-party computation for every user. In Proceedings of the forty-sixth annual ACM symposium on theory of computing (pp. 109-118). https://dl.acm.org/doi/10.1145/3387108
- Chase, M., & Lysyanskaya, A. (2004). Efficient constructions for anonymous credentials. In Theory of Cryptography (TCC 2004) (pp. 195-211). Springer, Berlin, Heidelberg. https://eprint.iacr.org/2021/1680.pdf