DOI QR코드

DOI QR Code

Mitochondria Activity and CXCR4 Collaboratively Promote the Differentiation of CD11c+ B Cells Induced by TLR9 in Lupus

  • Sung Hoon Jang (Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Joo Sung Shim (Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Jieun Kim (Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Eun Gyeol Shin (Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Jong Hwi Yoon (Department of Microbiology, Yonsei University College of Medicine) ;
  • Lucy Eunju Lee (Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Ho-Keun Kwon (Department of Microbiology, Yonsei University College of Medicine) ;
  • Jason Jungsik Song (Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine)
  • Received : 2024.06.03
  • Accepted : 2024.06.12
  • Published : 2024.08.31

Abstract

Lupus is characterized by the autoantibodies against nuclear Ags, underscoring the importance of identifying the B cell subsets driving autoimmunity. Our research focused on the mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients after ex vivo stimulation with a TLR9 agonist, CpG-oligodeoxyribonucleotide (ODN). We also evaluated the response of CD11c+ B cells in ODN-injected mice. Post-ex vivo ODN stimulation, we observed an increase in the proportion of CD11chi cells, with elevated mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients. In vivo experiments showed similar patterns, with TLR9 stimulation enhancing mitochondrial and CXCR4 activities in CD11chi B cells, leading to the generation of anti-dsDNA plasmablasts. The CXCR4 inhibitor AMD3100 and the mitochondrial complex I inhibitor IM156 significantly reduced the proportion of CD11c+ B cells and autoreactive plasmablasts. These results underscore the pivotal roles of mitochondria and CXCR4 in the production of autoreactive plasmablasts.

Keywords

Acknowledgement

We are grateful to all the individuals who participated in the study. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (grant number RS-2023-00251155 to JJS and 2019R1A6A1A03032869 to HK).

References

  1. Karrar S, Cunninghame Graham DS, Abnormal B. Abnormal B cell development in systemic lupus erythematosus: what the genetics tell us. Arthritis Rheumatol 2018;70:496-507. https://doi.org/10.1002/art.40396
  2. Caielli S, Wan Z, Pascual V. Systemic lupus erythematosus pathogenesis: interferon and beyond. Annu Rev Immunol 2023;41:533-560. https://doi.org/10.1146/annurev-immunol-101921-042422
  3. Jin W, Luo Z, Yang H, Peripheral B. Peripheral B cell subsets in autoimmune diseases: clinical implications and effects of B cell-targeted therapies. J Immunol Res 2020;2020:9518137.
  4. Rincon-Arevalo H, Wiedemann A, Stefanski AL, Lettau M, Szelinski F, Fuchs S, Frei AP, Steinberg M, Kam-Thong T, Hatje K, et al. Deep phenotyping of CD11c+ B cells in systemic autoimmunity and controls. Front Immunol 2021;12:635615.
  5. Golinski ML, Demeules M, Derambure C, Riou G, Maho-Vaillant M, Boyer O, Joly P, Calbo S. CD11c+ B cells are mainly memory cells, precursors of antibody secreting cells in healthy donors. Front Immunol 2020;11:32.
  6. Frasca D, Romero M, Garcia D, Diaz A, Blomberg BB. Hyper-metabolic B cells in the spleens of old mice make antibodies with autoimmune specificities. Immun Ageing 2021;18:9.
  7. Song W, Antao OQ, Condiff E, Sanchez GM, Chernova I, Zembrzuski K, Steach H, Rubtsova K, Angeletti D, Lemenze A, et al. Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers. Immunity 2022;55:290-307.e5. https://doi.org/10.1016/j.immuni.2022.01.002
  8. Cancro MP, Age-Associated B. Cells. Annu Rev Immunol 2020;38:315-340.  https://doi.org/10.1146/annurev-immunol-092419-031130
  9. Meffre E, O'Connor KC. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev 2019;292:90-101. https://doi.org/10.1111/imr.12821
  10. Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS, Rahman S, Zerrouki K, Hanna R, Morehouse C, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat Commun 2018;9:1758.
  11. Naradikian MS, Myles A, Beiting DP, Roberts KJ, Dawson L, Herati RS, Bengsch B, Linderman SL, Stelekati E, Spolski R, et al. Cutting edge: IL-4, IL-21, and IFN-γ interact to govern T-bet and CD11c expression in TLR-activated B cells. J Immunol 2016;197:1023-1028. https://doi.org/10.4049/jimmunol.1600522
  12. Horisberger A, Humbel M, Fluder N, Bellanger F, Fenwick C, Ribi C, Comte D. Measurement of circulating CD21-CD27- B lymphocytes in SLE patients is associated with disease activity independently of conventional serological biomarkers. Sci Rep 2022;12:9189.
  13. Price MJ, Patterson DG, Scharer CD, Boss JM. Progressive upregulation of oxidative metabolism facilitates plasmablast differentiation to a T-independent antigen. Cell Reports 2018;23:3152-3159. https://doi.org/10.1016/j.celrep.2018.05.053
  14. Wehrli N, Legler DF, Finke D, Toellner KM, Loetscher P, Baggiolini M, MacLennan IC, Acha-Orbea H. Changing responsiveness to chemokines allows medullary plasmablasts to leave lymph nodes. Eur J Immunol 2001;31:609-616. https://doi.org/10.1002/1521-4141(200102)31:2<609::AID-IMMU609>3.0.CO;2-9
  15. Muehlinghaus G, Cigliano L, Leyendeckers H, Arce S, Radbruch A, Manz RA. Differential regulation of the expression of chemokine receptor 3 and 4 during plasma cell differentiation. Arthritis Res 2004;6 Suppl 1:11.
  16. Lartigue A, Courville P, Auquit I, Francois A, Arnoult C, Tron F, Gilbert D, Musette P. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J Immunol 2006;177:1349-1354. https://doi.org/10.4049/jimmunol.177.2.1349
  17. Ma K, Li J, Fang Y, Lu L. Roles of B cell-intrinsic TLR signals in systemic lupus erythematosus. Int J Mol Sci 2015;16:13084-13105. https://doi.org/10.3390/ijms160613084
  18. Klonowska-Szymczyk A, Wolska A, Robak T, Cebula-Obrzut B, Smolewski P, Robak E. Expression of toll-like receptors 3, 7, and 9 in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Mediators Inflamm 2014;2014:381418.
  19. Papadimitraki ED, Choulaki C, Koutala E, Bertsias G, Tsatsanis C, Gergianaki I, Raptopoulou A, Kritikos HD, Mamalaki C, Sidiropoulos P, et al. Expansion of toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process. Arthritis Rheum 2006;54:3601-3611. https://doi.org/10.1002/art.22197
  20. Shim JS, Kim EJ, Lee LE, Kim JY, Cho Y, Kim H, Kim J, Jang SH, Son J, Cheong JH, et al. The oxidative phosphorylation inhibitor IM156 suppresses B-cell activation by regulating mitochondrial membrane potential and contributes to the mitigation of systemic lupus erythematosus. Kidney Int 2023;103:343-356.
  21. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982;25:1271-1277. https://doi.org/10.1002/art.1780251101
  22. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH, Austin A, Bell A, Bloch DA, Corey PN, Decker JL, et al. Derivation of the SLEDAI. A disease activity index for lupus patients. The committee on prognosis Studies in SLE. Arthritis Rheum 1992;35:630-640. https://doi.org/10.1002/art.1780350606
  23. Krogmann AO, Lusebrink E, Steinmetz M, Asdonk T, Lahrmann C, Lutjohann D, Nickenig G, Zimmer S. Proinflammatory stimulation of toll-like receptor 9 with high dose CpG ODN 1826 impairs endothelial regeneration and promotes atherosclerosis in mice. PLoS One 2016;11:e0146326.
  24. Behrens EM, Canna SW, Slade K, Rao S, Kreiger PA, Paessler M, Kambayashi T, Koretzky GA. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J Clin Invest 2011;121:2264-2277. https://doi.org/10.1172/JCI43157
  25. Du SW, Arkatkar T, Al Qureshah F, Jacobs HM, Thouvenel CD, Chiang K, Largent AD, Li QZ, Hou B, Rawlings DJ, et al. Functional characterization of CD11c+ age-associated B cells as memory B cells. J Immunol 2019;203:2817-2826. https://doi.org/10.4049/jimmunol.1900404
  26. Nickerson KM, Smita S, Hoehn KB, Marinov AD, Thomas KB, Kos JT, Yang Y, Bastacky SI, Watson CT, Kleinstein SH, et al. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice. J Exp Med 2023;220:e20221346.
  27. Li ZY, Cai ML, Qin Y, Chen Z. Age/autoimmunity-associated B cells in inflammatory arthritis: an emerging therapeutic target. Front Immunol 2023;14:1103307.
  28. Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, Li J, Lu L. Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus. Int J Mol Sci 2019;20:6021. 
  29. Sachinidis A, Xanthopoulos K, Garyfallos A, Age-Associated B. Age-associated B cells (ABCs) in the prognosis, diagnosis and therapy of systemic lupus erythematosus (SLE). Mediterr J Rheumatol 2020;31:311-318. https://doi.org/10.31138/mjr.31.3.311
  30. Rubtsova K, Rubtsov AV, Thurman JM, Mennona JM, Kappler JW, Marrack P. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J Clin Invest 2017;127:1392-1404. https://doi.org/10.1172/JCI91250
  31. Liu Y, Zhou S, Qian J, Wang Y, Yu X, Dai D, Dai M, Wu L, Liao Z, Xue Z, et al. T-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupus. Arthritis Res Ther 2017;19:225.
  32. Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006;25:417-428. https://doi.org/10.1016/j.immuni.2006.07.013
  33. Fillatreau S, Manfroi B, Dorner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat Rev Rheumatol 2021;17:98-108. https://doi.org/10.1038/s41584-020-00544-4
  34. Giorgiutti S, Rottura J, Korganow AS, Gies V. CXCR4: from B-cell development to B cell-mediated diseases. Life Sci Alliance 2024;7:e202302465.
  35. Alouche N, Bonaud A, Rondeau V, Hussein-Agha R, Nguyen J, Bisio V, Khamyath M, Crickx E, Setterblad N, Dulphy N, et al. Hematologic disorder-associated Cxcr4 gain-of-function mutation leads to uncontrolled extrafollicular immune response. Blood 2021;137:3050-3063. https://doi.org/10.1182/blood.2020007450
  36. Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019;292:120-138. https://doi.org/10.1111/imr.12815
  37. Broketa M, Bruhns P. Single-cell technologies for the study of antibody-secreting cells. Front Immunol 2022;12:821729.
  38. Elsner RA, Shlomchik MJ. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 2020;53:1136-1150. https://doi.org/10.1016/j.immuni.2020.11.006
  39. Willette RN, Mangrolia P, Pondell SM, Lee CY, Yoo S, Rudoltz MS, Cowen BR, Welsch DJ. Modulation of oxidative phosphorylation with IM156 attenuates mitochondrial metabolic reprogramming and inhibits pulmonary fibrosis. J Pharmacol Exp Ther 2021;379:290-300. https://doi.org/10.1124/jpet.121.000811
  40. Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 2023;379:351-357. https://doi.org/10.1126/science.ade3332
  41. Izreig S, Gariepy A, Kaymak I, Bridges HR, Donayo AO, Bridon G, DeCamp LM, Kitchen-Goosen SM, Avizonis D, Sheldon RD, et al. Repression of LKB1 by miR-17~92 sensitizes MYC-dependent lymphoma to biguanide treatment. Cell Rep Med 2020;1:100014.
  42. Biajoux V, Natt J, Freitas C, Alouche N, Sacquin A, Hemon P, Gaudin F, Fazilleau N, Espeli M, Balabanian K. Efficient plasma cell differentiation and trafficking require Cxcr4 desensitization. Cell Reports 2016;17:193-205. https://doi.org/10.1016/j.celrep.2016.08.068
  43. Cheng Q, Khodadadi L, Taddeo A, Klotsche J, F Hoyer B, Radbruch A, Hiepe F. CXCR4-CXCL12 interaction is important for plasma cell homing and survival in NZB/W mice. Eur J Immunol 2018;48:1020-1029. https://doi.org/10.1002/eji.201747023
  44. Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, Marrack P. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 2011;118:1305-1315.
  45. Oh S, Payne AS. Engineering cell therapies for autoimmune diseases: from preclinical to clinical proof of concept. Immune Netw 2022;22:e37.
  46. Jung SM, Kim WU. Targeted immunotherapy for autoimmune disease. Immune Netw 2022;22:e9.