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ABSTRACT

Lupus is characterized by the autoantibodies against nuclear Ags, underscoring the 
importance of identifying the B cell subsets driving autoimmunity. Our research focused 
on the mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients 
after ex vivo stimulation with a TLR9 agonist, CpG-oligodeoxyribonucleotide (ODN). We also 
evaluated the response of CD11c+ B cells in ODN-injected mice. Post-ex vivo ODN stimulation, 
we observed an increase in the proportion of CD11chi cells, with elevated mitochondrial 
activity and CXCR4 expression in CD11c+ B cells from lupus patients. In vivo experiments 
showed similar patterns, with TLR9 stimulation enhancing mitochondrial and CXCR4 
activities in CD11chi B cells, leading to the generation of anti-dsDNA plasmablasts. The CXCR4 
inhibitor AMD3100 and the mitochondrial complex I inhibitor IM156 significantly reduced 
the proportion of CD11c+ B cells and autoreactive plasmablasts. These results underscore the 
pivotal roles of mitochondria and CXCR4 in the production of autoreactive plasmablasts.

Keywords: Systemic lupus erythematosus; B-Lymphocyte subsets; Mitochondria;  
CXCR4 receptor; TLR9 protein

INTRODUCTION

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by 
hyperactive B cells that produce autoantibodies against nuclear Ags (1,2). CD11c+ B cells, also 
known as age-associated B cells (ABCs), have received significant attention in the context of 
autoimmune diseases such as rheumatoid arthritis, Sjogren’s syndrome, multiple sclerosis, 
and lupus (3-5). These cells are predominantly found in the spleen, with few present in lymph 
nodes or other lymphatic tissues. In older mice, ABCs show a hyper-metabolic state indicated 
by elevated oxygen consumption rates and extracellular acidification rates (6).
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Unlike follicular (FO) B cells that divide in response to B cell receptor (BCR) cross-linking, 
ABCs do not respond to BCR stimuli. Instead, they show a robust proliferation response to 
stimuli engaging TLRs 7 and 9 (7,8). In autoimmune settings, CD11c+ B cells secrete a distinct 
profile of cytokines and chemokines, contributing to the typical inflammatory milieu (4,5,8). 
Their abilities to present Ags, secrete cytokines, and interact with T cells are hypothesized 
to collectively contribute to breaking self-tolerance and promoting autoimmune responses 
(5,9). Additionally, emerging evidence indicates that CD11c+ B cells have the potential 
to become plasmablasts (5,10). By transforming into plasmablasts, ABCs can contribute 
significantly to the body's ability to combat infections quickly, providing an immediate 
supply of antibodies that are crucial during the early stages of pathogen invasion (11).

In SLE, the number of CD11c+ B cells correlates with disease severity, suggesting their role 
in pathogenesis and potential as biomarkers for monitoring disease progression (8,12). 
These cells also display characteristics akin to memory B cells, showing Ag-dependent 
expansion and rapid differentiation into Ab-secreting cells with an associated increase in 
energy demands. Mitochondria are essential for ATP production, a critical energy source 
for the highly demanding process of Ab production by plasmablasts (13). While CXCR5 
induces germinal center B cell differentiation in the FO pathway, CXCR4 induces plasmablast 
differentiation in the extrafollicular pathway (14,15). However, the roles of mitochondria and 
CXCR4 in the differentiation of CD11c+ B cells in lupus have not been extensively studied.

TLR9 is crucial for generating autoantibodies against DNA-containing Ags in lupus (16). 
Studies indicate that the expression of TLR9 is increased in SLE patients, particularly in B 
cells (17-19). However, the response of CD11c+ B cells to TLR9 stimulation in lupus patients 
remain insufficiently explored. We have recently reported that administering unmethylated 
CpG oligodeoxyribonucleotide (CpG-ODN), a TLR9 agonist, in mice results in an increase in 
with CD11c+ B cells along with a significant role of mitochondria (20).

In this study, we examined the proportion of CD11c+ B cells, as well as their mitochondrial 
activity and CXCR4 expression, in patients with lupus in response to ODN. We also evaluated 
mitochondrial activity and CXCR4 expression in CD11c+ B cells and plasmablasts of mice 
with repeated ODN injections. We demonstrated that combination therapy with IM156, a 
mitochondrial complex I inhibitor, and AMD3100, a CXCR4 inhibitor, additively inhibited the 
generation of autoreactive plasmablasts and the production of autoantibodies.

MATERIALS AND METHODS

Human blood samples from healthy donors and patients with lupus
Whole blood was collected from healthy donors and lupus patients after obtaining 
informed consent, with the approval of the Severance Hospital Institutional Review Board 
program (4-2023-0275, 4-2020-0996). Experiments using human blood were performed in 
accordance with the Declaration of Helsinki. All the patients fulfilled the American College 
of Rheumatology SLE classification criteria (21). Disease activity was assessed using the SLE 
Disease Activity Index (22). The demographic and clinical characteristics of the donors are 
presented in Supplementary Table 1.
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Ex vivo TLR9 stimulation on human B cells
PBMCs were isolated using Ficoll-Paque (GE Healthcare, Chicago, IL, USA) and stored in 
a liquid nitrogen tank. PBMCs were seeded at 1×106 cells/well in a 12-well plate with 1 μM 
ODN2006 (Bioneer, Daejeon, Korea), 25 ng/ml IL-21 (PeproTech, Cranbury, NJ, USA), and 
10 ng/ml B cell activating factor (AdipoGen Life Sciences, San Diego, CA, USA) for 48 h. All 
stimulants were diluted in Roswell Park Memorial Institute (RPMI)-1640 (HyClone, Logan, 
UT, USA) with 10% FBS (Cytiva, Marlborough, MA, USA) and 1% penicillin-streptomycin 
(HyClone). The gating strategy for human B cells is presented in Supplementary Fig. 1.

Animal experiments
All experimental protocols were approved by the Institutional Animal Care and Use 
Committee of the Yonsei University Health System and in accordance with the relevant 
guidelines and regulations (2021-0231). All experimental protocols are in accordance 
with ARRIVE guidelines. Mice were maintained under specific pathogen-free conditions 
at a controlled temperature (23°C±3°C) and relative humidity (40%–60%). According to 
American Veterinary Medical Association Guidelines for the Euthanasia of Animals (2020), 
Mice euthanasia performed by CO2.

In vivo mouse CD11c+ B cell activation by ODN
An ODN-injected mouse model is described previously (23,24). Seven-week-old B6 mice 
(Orient Bio, Seoul, Korea) were intraperitoneally injected with 50 µg of ODN1826 (Bioneer) 
on days 0, 2, 4, 6, and 8. Mice in the treatment group were intraperitoneally injected with 
IM156 (ImmunoMet Therapeutics, Houston, TX, USA) and AMD3100 (Cayman Chemical, 
Ann Arbor, MI, USA) on days 1, 3, 5, 7, and 9. Spleen, blood, and bone marrow were 
collected for analysis on day 10. The gating strategies for mouse B cells are presented in 
Supplementary Figs. 2 and 3.

Ex vivo mouse CD11c+ B cell activation by ODN
Mouse PBMCs were stimulated with 1 μM ODN (ODN1826; Bioneer) and 25 ng/mL IL-21 for 
72 h. All stimulants were diluted in RPMI-1640 (Hyclone, Logan, UT, USA) with 10% FBS 
(Cytiva) and 1% penicillin-streptomycin (Hyclone).

Statistical analysis
The p-values were calculated using a two-tailed Student’s t-test with Tukey’s multiple 
comparison test as a post hoc analysis (GraphPad software version 9; GraphPad Software, 
Boston, MA, USA).

Detailed descriptions of materials and methods are available in Supplementary Data 1 and 
Supplementary Table 2.

RESULTS

Ex vivo ODN upregulates mitochondrial activity and CXCR4 expression in 
CD11c+ B cells from patients with lupus
ABCs are a subset of CD19+ B cells characterized by the expression of CD11c and CD11b (Fig. 1A) 
(25-27). Comparing PBMCs from patients with lupus and healthy donors, the proportion of 
CD11c+ B cells is higher in lupus (Fig. 1B). There was no difference in the proportion of dead cells 
with or without ex vivo ODN stimulation (Fig. 1C). Interestingly, ODN increased mitotracker 
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Figure 1. Mitochondrial activity and CXCR4 expression in CD11c+ B cells from healthy donors and patients with lupus. (A) Representative flow cytometry 
plots of human CD11c+ B cells. (B) Percentage ratio of CD11c+ B cells/CD19 B cells in human PBMCs. (C) Cell viability of human PBMCs measured by 7-AAD. (D) 
Measurement of MTDR fluorescence in CD11c+ B cells. (E) CXCR4 expression in CD11c+ B cells. (F) Correlation between MTDR and CXCR4 expression in CD11c+ B 
cells of healthy donors following ex vivo ODN stimulation. (G) Correlation between MTDR and CXCR4 expression in CD11c+ B cells of patients with lupus following 
ex vivo ODN stimulation. (H) Representative flow cytometry plots of human CD11chi B cells. (I) Percentage ratio of CD11clo and CD11chi B cells/CD11c+ B cells. (J) 
Measurement of MTDR fluorescence in human CD11clo and CD11chi B cells. (K) Measurement of CXCR4 expression in human CD11clo and CD11chi B cells. Statistical 
significance was determined by unpaired two-tailed Student’s t-test and one-way ANOVA. 
ns, not significant. 
*p<0.05, **p<0.01, ***p<0.005, ****p<0.001.



deep red (MTDR) fluorescence and the expression of CXCR4 in CD11c+ B cells of patients 
with lupus but decreased them in those of healthy controls (Fig. 1D and E). Notably, we 
observed a strong positive correlation between CXCR4 expression and MTDR fluorescence in 
CD11c+ B cells of patients with lupus, but not in controls following ODN stimulation (Fig. 1F 
and G). Our results revealed that CD11c+ B cells derived from patients with lupus exhibited a 
hyperactive TLR9 response compared with those from healthy donors.

Given the heterogeneity within CD11c+ B cell populations, we evaluated the expression levels 
of T-bet, CXCR4, and MTDR in CD11chi and CD11clo B cells from human PBMCs. The results 
showed higher expression of T-bet, CXCR4, and MTDR in CD11chi B cells compared to 
CD11clo B cells (Supplementary Fig. 4). Subsequent analysis focused on the response of these 
CD11c+ B cell subsets to ex vivo ODN stimulation. In healthy donors, the proportion of CD11chi 
cells decreased upon ODN stimulation, whereas an increase was observed in patients with 
lupus (Fig. 1H and I). Additionally, ex vivo ODN stimulation resulted in a reduction of CXCR4 
and MTDR levels in CD11chi cells from healthy donors, but an increase in these markers in 
patients with lupus (Fig. 1J and K).

In vivo ODN induces CD11c+ B cells and autoreactive plasmablasts in mice
We evaluated the effect of in vivo ODN on CD11c+ B cells and plasmablasts in mice. The 
ratio of CD11c+ B cells to CD19+ B cells in mouse PBMCs increased following ODN injection 
(Fig. 2A and B). Similar to CD11c+ B cells of patients with lupus, we observed increased 
mitochondrial activity and CXCR4 expression in CD11c+ B cells following ODN injection 
(Fig. 2C and D). A chemotaxis assay revealed an increased migration of splenocyte from 
ODN-injected mice toward stromal cell-derived factor 1α (SDF-1α) (Fig. 2E). Anti-dsDNA IgG 
levels increased in the serum of mice injected with ODN on day 10 (Fig. 2F). Anti-dsDNA 
IgG-secreting cells were detected only in the bone marrow and not in the spleen or blood 
and their numbers were significantly increased in mice injected with ODN (Fig. 2G and H). 
CXCR4 expression increased as CD11c+ B cells migrated from the spleen to the blood and 
bone marrow following ODN stimulation (Fig. 2I). These results suggest that TLR9 induces 
CD11c+ B cells and autoreactive plasmablasts, accompanied by increased mitochondrial 
activity and CXCR4 expression.

We also analyzed plasmablasts and plasma cells in ODN-injected mice. Almost all 
plasmablasts expressed CD11c and CD11b, but about half of plasma cells did not express 
CD11c and CD11b (Fig. 2J). The rise in CD11c levels following ODN administration was 
notably more pronounced in plasmablasts (Fig. 2K). Plasmablasts exhibited significantly 
elevated mitochondrial activity, and increased expression levels of CXCR4 and TLR9 
compared to plasma cells (Fig. 2L-N).

In vivo ODN increases the number of CD11chi B cells, as well as their CXCR4 
and MTDR levels in mice
Using the CD11b+CD11c+ B cells obtained on day 0, we classified CD11b+ B cells into three 
groups based on CD11c mean fluorescence intensity (MFI). Cells with lower CD11c MFI 
levels than CD11b- B cells were defined as CD11clo B cells. Among the remaining cells except 
CD11clo B cells, the bottom 50% MFI were defined as CD11cint B cells, and those with higher 
MFI levels were defined as CD11chi B cells (Fig. 3A). Similar to observation in human PBMC, 
the proportion of CD11chi B cells was elevated in mice with in vivo ODN injection compared to 
control mice (Fig. 3B). Additionally, levels of MTDR and CXCR4 were also elevated in CD11chi 
B cells following ODN injection (Fig. 3C and D). However, no such increase was observed 
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Figure 2. In vivo CpG-ODN induces autoimmune CD11c+ B cells. Mice were intraperitoneally injected with 50 µg of ODN1826 five times over 10 days. (A) 
Representative flow cytometry plots of mouse CD11c+ B cells. (B) Percentage ratio of CD11c+ B cells/CD19 B cells in mouse PBMCs after ODN in vivo stimulation. 
(C) Measurement of MTDR in CD11c− B cells and CD11c+ B cells. (D) CXCR4 expression in CD11c− B cells and CD11c+ B cells. (E) Chemotaxis assay of SDF-1α using 
mouse splenocytes. (F) Serum anti-dsDNA IgG levels. (G) Counts of anti-dsDNA IgG-secreting cells. (H) Representative ELISPOT figures of anti-dsDNA IgG-
secreting cells in bone marrow. (I) CXCR4 expression in B cells and CD11c+ B cells of the spleen, PBMCs, and bone marrow. (J) Representative flow cytometry 
plots of plasmablasts and plasma cells. (K) Measurement of CD11c expression in plasmablasts and plasma cells. (L) Measurement of MTDR fluorescence in 
plasmablasts and plasma cells. (M) Measurement of CXCR4 expression in plasmablasts and plasma cells. (N) Measurement of TLR9 expression in plasmablasts 
and plasma cells. Statistical significance was determined by unpaired two-tailed Student’s t-test and one-way ANOVA (n=3–4). D10 refers to the 10th day after 
the start of the experiment. Each experiment was repeated three times independently to ensure reproducibility. 
ns, not significant. 
*p<0.05, **p<0.01, ***p<0.005, ****p<0.001.
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Figure 3. Comparison between CD11clo, CD11cint and CD11chi B cells in mouse blood following in vivo ODN injection and ex vivo ODN treatment. (A) Representative 
flow cytometry plots of mouse CD11clo, CD11cint and CD11chi B cells in vivo. (B) Percentage ratio of CD11clo, CD11cint and CD11chi B cells/CD11b+ B cells in vivo. (C) 
Measurement of MTDR fluorescence in CD11clo, CD11cint and CD11chi B cells in vivo. (D) Measurement of CXCR4 expression in CD11clo, CD11cint and CD11chi B cells in 
vivo. (E) Measurement of CD80 expression in CD11clo, CD11cint and CD11chi B cells in vivo. (F) Measurement of CD86 expression in CD11clo, CD11cint and CD11chi B cells 
in vivo. (G) Percentage ratio of CD11clo, CD11cint and CD11chi B cells/CD11b+ B cells in mouse PBMCs in CD11clo, CD11cint and CD11chi B cells ex vivo. (H) Measurement 
of MTDR fluorescence in CD11clo, CD11cint and CD11chi B cells ex vivo. (I) Measurement of CXCR4 expression in CD11clo, CD11cint and CD11chi B cells ex vivo. (J) 
Measurement of TLR9 expression in CD11clo, CD11cint and CD11chi B cells ex vivo. (K) ΔTLR9 expression calculated by subtracting the TLR9 MFI value without ODN 
ex vivo from the TLR9 MFI value with ODN ex vivo. Statistical significance was determined by unpaired two-tailed Student’s t-test (n=3). Each experiment was 
repeated three times independently to ensure reproducibility. 
*p<0.05, **p<0.01, ***p<0.005, ****p<0.001.



in CD11cint B cells. Conversely, surface markers of B cell activation, CD80 and CD86, were 
increased in both CD11chi and CD11cint B cells (Fig. 3E and F). CD11clo B cells display different 
characteristics from CD11cint B cells in several markers, including MTDR, CXCR4, CD80, and 
CD86. This demonstrates the heterogeneity of TLR9 sensitivity within CD11c+ B cells.

Ex vivo ODN induces activation of CXCR4 in CD11c+ B cells from ODN-injected 
mice
To investigate the opposite results of CXCR4 following ex vivo ODN stimulation in CD11c+ B 
cells from healthy donors and patients with lupus, we collected PBMCs at baseline (D0) and 
after 10 days (D10) from ODN-injected mice. In addition to in vivo ODN injection, ex vivo ODN 
stimulation was conducted over three days on PBMCs. This additional ex vivo ODN stimulation 
increased the proportion of CD11chi B cells in both D0 and D10 samples (Fig. 3G). Ex vivo ODN 
stimulation resulted in elevated MTDR levels in all CD11c+ B cell subsets from both D0 and 
D10 samples (Fig 3H). Remarkably, while CXCR4 expression decreased in CD11c+ B cells from 
D0 samples, it paradoxically increased in CD11c+ B cells from D10 samples (Fig. 3I), mirroring 
the response observed in human CD11c+ B cells under similar experimental conditions. This 
pattern highlights an inability of these cells to downregulate CXCR4 in response to additional 
TLR9 stimulation, indicating a complex regulatory mechanism within TLR9 signaling 
pathways. Additionally, ex vivo ODN stimulation increased TLR9 expression in CD11c+ cells 
from D0 samples; however, this elevated expression was diminished in CD11c+ cells from D10 
samples (Fig. 3J and K).

IM156 and AMD3100 additively downregulate CD11c+ B cells and autoreactive 
plasmablasts
Because CD11c+ B cells in lupus have the distinct characteristics of high MTDR and CXCR4 
expression, we investigated the capacity of combination therapy with low doses of IM156 and 
AMD3100 to suppress CD11c+ B cells in ODN-injected mice. The dose of IM156 was selected 
based on our previous experiments (20), while the dose of AMD3100 was determined from 
preliminary data (Supplementary Fig. 5). Additive effects were observed in reducing the ratio 
of CD11c+ B cells to CD19+ B cells in PBMCs (Fig. 4A), and the ratio of plasmablasts to CD19+ B 
cells in the bone marrow (Fig. 4B). Moreover, our results revealed an additive effect in reducing 
both CXCR4 expression (Fig. 4C) and MTDR levels (Fig. 4D) in bone marrow plasmablasts.

A chemotaxis assay demonstrated that IM156 and AMD3100 additively inhibited splenocyte 
migration toward SDF-1α (Fig. 4E). Furthermore, combination therapy with IM156 and 
AMD3100 reduced anti-dsDNA IgG levels and the number of anti-dsDNA IgG-secreting cells 
(Fig. 4F and G). Subset analysis on CD11c+ B cells demonstrated that combination therapy 
with low doses of IM156 and AMD3100 notably decreased the proportion of CD11chi B cells 
in the blood by additive inhibition of their metabolism and migration more effectively 
than either agent alone (Fig. 4H). While AMD3100 effectively reduced MTDR and CXCR4 
expression in CD11chi B cells (Fig. 4I), IM156 mainly decreased MTDR levels in CD11c+ B cells 
without significantly impacting CXCR4 expression (Fig. 4J). Overall, these findings suggest 
that combination therapy with low doses of IM156 and AMD3100 significantly downregulated 
CD11c+ B cells and autoreactive plasmablasts.
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Figure 4. Combination therapy with IM156 and AMD3100 downregulates autoreactive CD11c+ B cells and plasmablasts in ODN-injected mice. Mice were 
intraperitoneally injected with 50 µg of ODN1826 five times over 10 days with AMD3100 and/or IM156. (A) Percentage ratio of CD11c+ B cells/CD19 B cells in mouse 
PBMCs treated with IM156 and AMD3100. (B) Percentage ratio of plasmablasts in the bone marrow treated with IM156 and AMD3100. (C) CXCR4 expression in 
bone marrow plasmablasts treated with IM156 and AMD3100. (D) Measurement of MTDR in bone marrow plasmablasts treated with IM156 and AMD3100. (E) 
Chemotaxis assay of SDF-1α using mouse splenocytes treated with IM156 and AMD3100. (F) Serum anti-dsDNA IgG levels treated with IM156 and AMD3100. (G) 
Counts of anti-dsDNA IgG-secreting cells in the bone marrow treated with IM156 and AMD3100. (H) Percentage ratio of CD11cint and CD11chi B cells/CD11c+ B cells 
with IM156 and AMD3100. (I) Measurement of MTDR fluorescence in CD11cint and CD11chi B cells with IM156 and AMD3100. (J) Measurement of CXCR4 expression in 
CD11cint and CD11chi B cells with IM156 and AMD3100. Statistical significance was determined by unpaired two-tailed Student’s t-test (n=3). Each experiment was 
repeated three times independently to ensure reproducibility. 
ns, not significant. 
*p<0.05, **p<0.01, ***p<0.005, ****p<0.001.



DISCUSSION

Lupus is a relapsing autoimmune disease in which B cells play a central role in pathogenesis 
through autoantibody production, cytokine secretion, and Ag presentation (28). In our 
study, we focused on CD11c+ B cells in lupus and investigated their mitochondrial activity 
and CXCR4 expression following ex vivo TLR9 stimulation with ODN. Indeed, CD11c+ B 
cells were increased in patients with lupus, which is consistent with previous reports (4,10). 
Furthermore, we observed that CD11c+ B cells from patients with lupus exhibited enhanced 
mitochondrial activity and CXCR4 expression compared with those from healthy controls 
after ex vivo ODN stimulation. This upregulation was critical for plasmablast differentiation in 
our mouse model, in which ODN administration led to an increase in the number of CD11c+ B 
cells with increased mitochondrial activity and CXCR4 expression. This was accompanied by 
an increase in serum anti-dsDNA Abs and autoreactive plasmablasts in the bone marrow.

The identification of ABCs has deepened our understanding of SLE (8,29). Although 
heterogeneity exists within the ABC population (29), it is largely an Ag-experienced pool 
that arises under specific signaling circumstances (8). ABCs, which serve as precursors to 
plasmablasts, are intricately associated with SLE pathogenesis, especially during disease 
flares (30,31).

In SLE, TLR7 is recognized for its pathogenic influence, whereas the role of TLR9 remains 
a subject of debate. TLR9 plays a key role in recognizing DNA-containing Ags, which are 
central to SLE pathology. Despite its involvement in generating autoantibodies against 
DNA, TLR9 generally exerts a protective impact on the disease. Research indicates that 
mice lacking TLR9 display heightened autoimmune responses and more severe symptoms, 
suggesting TLR9's crucial regulatory function in mitigating SLE (32). This protective effect of 
TLR9 is at least partially mediated by its ability to limit the stimulatory activity of TLR7 (33).

We observed that CD11chi B cells from patients with lupus increase CXCR4 expression following 
TLR9 stimulation, contrasting with CD11chi B cells from healthy donors where CXCR4 is 
downregulated. For the proper regulation of plasmablast trafficking, it is important that CXCR4 
becomes temporarily unresponsive or less sensitive to its ligand SDF-1α (34). Therefore, this 
aberrant response might contribute to the pathogenesis of lupus, as seen in CXCR4 gain of 
function (GOF) mice, where improper CXCR4 regulation leads to exacerbated B cell responses 
and increased IgM levels (35). These CXCR4 GOF mice also demonstrate significant increases 
in bone marrow plasmablasts. Furthermore, this hyperactive CXCR4 expression in lupus B 
cells aligns with enhanced mitochondrial activity. Following ODN injections, similar increases 
in CXCR4 and mitochondrial activity were noted in mice, suggesting complex TLR9-CXCR4 
interactions potentially influenced by mitochondrial dynamics.

TLR9 stimulation, specifically through CpG treatment, differentially affects B cell subsets, 
particularly in relation to mitochondrial activity. Our in vivo data highlight that CD11c+ B 
cells, which typically upregulate CD11c in response to TLR9 stimulation, exhibit increased 
mitochondrial activity, whereas CD11c- B cells maintain unchanged mitochondrial activity levels.

Short-lived plasmablasts, which function as transient effector cells during the initial Ab 
response, often escape immune tolerance mechanisms in autoimmune diseases such as 
lupus (36-38). Furthermore, we and others reported that the upregulation of mitochondrial 
oxidative phosphorylation genes is contingent on B cells functioning as plasmablasts to 
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fulfill high energy demands (13,20). Our study highlights the pivotal role of mitochondrial 
metabolism in the development of CD11c+ B cells and autoreactive plasmablasts. This 
enhanced mitochondrial respiration opens new therapeutic avenues for the metabolic 
regulation of CD11c+ B cells in lupus. IM156, a novel biguanide derivative, has demonstrated 
60-fold higher potency than metformin in vivo, effectively modulating oxidative 
phosphorylation by complex I inhibition (39-41).

However, IM156 could not fully suppress abnormal CXCR4 expression, leading us to explore 
a combination strategy employing IM156 and AMD3100 for more effective inhibition of 
autoimmune plasmablasts. CXCR4 reportedly facilitates the migration of plasma cells to 
the bone marrow (42,43). Our study extends this understanding by demonstrating that 
autoreactive plasmablasts derived from CD11c+ B cells migrate to the bone marrow via 
CXCR4. Treatment with IM156 reduces mitochondrial activity and inhibits the differentiation 
of CD11c+ B cells into plasmablasts. Concurrently, AMD3100 suppresses the migration of 
CD11c+ B cells to the bone marrow, thereby reducing autoantibody production. Combination 
therapy using low doses of IM156 and AMD3100 has demonstrated additive effects in 
suppressing autoreactive plasmablasts and reducing anti-dsDNA Ab levels.

Our study had limitations. First, the gender ratios between groups of SLE patients and 
healthy donors are significantly different. Regarding our study's primary variable—the 
proportions of CD11c+ B cells—results from several studies on human subjects and animal 
models indicate no significant gender-based differences in these proportions (5,44). 
Additionally, the small sample sizes of our study groups may limit the generalizability of our 
results. An increased sample size in future studies would not only enhance the statistical 
power but also enable a more detailed analysis of the correlations between CD11c+ B cells and 
clinical manifestations.

Various B cell-targeted therapies are being developed, but there are still no treatments for 
lupus that directly target mitochondria activity (45,46). The critical roles of mitochondrial 
activity and CXCR4 expression in generating anti-DNA Abs by these cells underscore the key 
involvement of CD11chi B cells in lupus pathogenesis and warrant further investigation into 
the autoimmune mechanisms.
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