DOI QR코드

DOI QR Code

Coupled 3D thermal-hydraulic code development for performance assessment of spent nuclear fuel disposal system

  • Samuel Park (Department of Nuclear Engineering, Seoul National University) ;
  • Nakkyu Chae (Department of Nuclear Engineering, Seoul National University) ;
  • Pilhyeon Ju (Department of Nuclear Engineering, Seoul National University) ;
  • Seungjin Seo (Department of Nuclear Engineering, Seoul National University) ;
  • Richard I. Foster (Nuclear Research Institute for Future Technology and Policy, Seoul National University) ;
  • Sungyeol Choi (Department of Nuclear Engineering, Seoul National University)
  • Received : 2023.11.22
  • Accepted : 2024.04.27
  • Published : 2024.09.25

Abstract

As a solution to the problem of spent nuclear fuels (SNFs), the disposal of SNF has gained attention from nations using nuclear energy because of hazards posed to the ecosystem. Among many proposed solutions, the most promising method is to dispose of SNF in a deep geological repository (DGR) which utilizes the multi-barrier concept developed by Finland and Sweden. Here, a new fully-coupled Thermal-Hydraulic (TH) code HADES (High-level rAdionuclide Disposal Evaluation Simulator) is developed using the MOOSE framework. This new code suggests basic numerical tools, such as a non-linear solver and finite element discretization, to assess the safety performance of disposal systems. The new TH code considered various TH behavior using Richards' flow approach, assuming gas pressure is constant. The HADES showed promising results when it was compared to various TH codes validated from DECOVAELX-THMC projects. When the single-canister model was utilized to estimate the TH behavior of the Korean Reference disposal System, although it showed significant saturation reduction due to the evaporation of water, the temperature was maintained under the thermal criteria limit, which is 100 ℃. In addition, the new code estimated temperature and degree of saturation of the multi-canisters model, considering two or three canisters, it showed a slightly lower temperature, 5 ℃, than the single-canister model. From these results, the following are concluded: (1) the new TH code contribute to an additional integrity by estimating TH behavior of KRS; (2) however, due to limitations in single-canister simulation, it is recommended to use multi-canisters simulation to estimate TH behavior accurately. Therefore, this model is anticipated not only to help licensing applications and estimation of various multi-physics phenomena and multi-canister at the disposal site.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021M2E1A1085194), and Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20224000000120).

References

  1. P.E. Ahlstrom, Towards a Swedish repository for spent fuel, Nucl. Eng. Des. 176 (1997) 67-74, https://doi.org/10.1016/s0029-5493(96)01332-5. 
  2. C.F. Tsang, O. Stephansson, L. Jing, F. Kautsky, DECOVALEX project: from 1992 to 2007, Environ. Geol. 57 (2009) 1221-1237, https://doi.org/10.1007/s00254-008-1625-1. 
  3. J.T. Birkholzer, A.E. Bond, J.A. Hudson, L. Jing, C.F. Tsang, H. Shao, O. Kolditz, DECOVALEX-2015: an international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems, Environ. Earth Sci. 77 (2018) 1-5, https://doi.org/10.1007/s12665-018-7697-7. 
  4. J.T. Birkholzer, A.E. Bond, DECOVALEX-2019: an international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems, Int. J. Rock Mech. Min. Sci. 154 (2022) 105097, https://doi.org/10.1016/j.ijrmms.2022.105097. 
  5. M. Chijimatsu, T. Fujita, Y. Sugita, K. Amemiya, A. Kobayashi, Field experiment, results and THM behavior in the Kamaishi mine experiment, Int. J. Rock Mech. Min. Sci. 38 (2001) 67-78, https://doi.org/10.1016/S1365-1609(00)00065-4. 
  6. J. Rutqvist, L. Borgesson, M. Chijimatsu, T.S. Nguyen, L. Jing, J. Noorishad, C. F. Tsang, Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine - comparison of field results to predictions of four finite element codes, Int. J. Rock Mech. Min. Sci. 38 (2001) 129-142, https://doi.org/10.1016/S1365-1609(00)00069-1. 
  7. M. Chijimatsu, T.S. Nguyen, L. Jing, J. De Jonge, M. Kohlmeier, A. Millard, A. Rejeb, J. Rutqvist, M. Souley, Y. Sugita, Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 1: Conceptualization and characterization of the problems and summary of results, Int. J. Rock Mech. Min. Sci. 42 (2005) 720-730, https://doi.org/10.1016/j.ijrmms.2005.03.010. 
  8. A. Millard, A. Rejeb, M. Chijimatsu, L. Jing, J. De Jonge, M. Kohlmeier, T. S. Nguyen, J. Rutqvist, M. Souley, Y. Sugita, Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 2: effects of THM coupling in continuous and homogeneous rocks, Int. J. Rock Mech. Min. Sci. 42 (2005) 731-744, https://doi.org/10.1016/j.ijrmms.2005.03.011. 
  9. J. Rutqvist, M. Chijimatsu, L. Jing, A. Millard, T.S. Nguyen, A. Rejeb, Y. Sugita, C. F. Tsang, A numerical study of THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 3: effects of THM coupling in sparsely fractured rocks, Int. J. Rock Mech. Min. Sci. 42 (2005) 745-755, https://doi.org/10.1016/j.ijrmms.2005.03.012. 
  10. J. Birkholzer, J. Rutqvist, E. Sonnenthal, B. D, Lawrence berkeley national DECOVALEX-THMC task D : long-term permeability/porosity changes in the EDZ and near field due to THM and THC processes in volcanic and crystaline-bentonite systems, Status Rep. October 2005 DECOVALEX-THMC Task D : Long-Term, October (2005). 
  11. W. Wang, J. Rutqvist, U.J. Gorke, J.T. Birkholzer, O. Kolditz, Non-isothermal flow in low permeable porous media: a comparison of Richards' and two-phase flow approaches, Environ. Earth Sci. 62 (2011) 1197-1207, https://doi.org/10.1007/s12665-010-0608-1. 
  12. D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandi'e, MOOSE: a parallel computational framework for coupled systems of nonlinear equations, Nucl. Eng. Des. 239 (2009) 1768-1778, https://doi.org/10.1016/j.nucengdes.2009.05.021. 
  13. J. Remacle, J. Lambrechts, B. Seny, Blossom-Quad: a non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm, International (2012) 1102-1119, https://doi.org/10.1002/nme. 
  14. B. Geveci, ParaView: an end-user tool for large data visualization ParaViewWeb view project, Los Alamos Natl. Lab. 836 (2005). https://datascience.dsscale.org/wp-content/uploads/2016/06/ParaView.pdf. 
  15. R.L. Williamson, J.D. Hales, S.R. Novascone, M.R. Tonks, D.R. Gaston, C. J. Permann, D. Andrs, R.C. Martineau, Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423 (2012) 149-163, https://doi.org/10.1016/j.jnucmat.2012.01.012. 
  16. J. Rutqvist, L. Borgesson, M. Chijimatsu, A. Kobayashi, L. Jing, T.S. Nguyen, J. Noorishad, C.F. Tsang, Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models, Int. J. Rock Mech. Min. Sci. 38 (2001) 105-127, https://doi.org/10.1016/S1365-1609(00)00068-X. 
  17. J.R. Philip, D.A. De Vries, Moisture movement in porous materials under temperature gradients, Eos, Trans. Am. Geophys. Union. 38 (1957) 222-232, https://doi.org/10.1029/TR038i002p00222. 
  18. W.G. Gray, S.M. Hassanizadeh, Paradoxes and realities in unsaturated flow theory, Water Resour. Res. 27 (1991) 1847-1854, https://doi.org/10.1029/91WR01259. 
  19. M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (1980) 892-898, https://doi.org/10.2136/sssaj1980.03615995004400050002x. 
  20. J. Lee, I. Kim, H. Ju, H. Choi, D. Cho, Proposal of an improved concept design for the deep geological disposal system of spent nuclear fuel in Korea, J. Nucl. Fuel Cycle Waste Technol. 18 (2020) 1-19, https://doi.org/10.7733/jnfcwt.2020.18.S.1. 
  21. C. Lee, J. Lee, S. Park, S. Kwon, W.J. Cho, G.Y. Kim, Numerical analysis of coupled thermo-hydro-mechanical behavior in single- and multi-layer repository concepts for high-level radioactive waste disposal, Tunn. Undergr. Space Technol. 103 (2020) 103452, https://doi.org/10.1016/j.tust.2020.103452. 
  22. W. Cho, J. Lee, S. Kwon, A correlation to predict the thermal conductivity of buffer and backfill material for a high-level waste repository, Tunn. Undergr. Sp. 20 (2010) 284-291. 
  23. S. Yoon, J.S. Jeon, G.J. Lee, Hydraulic properties of bentonite buffer material beyond 100 ◦C, Heliyon 9 (2023) e18447, https://doi.org/10.1016/j.heliyon.2023.e18447. 
  24. S. Yoon, G.-Y. Kim, M.-H. Baik, A prediction of specific heat capacity for compacted bentonite buffer, J. Nucl. Fuel Cycle Waste Technol. 15 (2017) 199-206, https://doi.org/10.7733/jnfcwt.2017.15.3.199. 
  25. N.Y. Ko, W.H. Cho, G.Y. Kim, Geological and hydrogeological evaluations of field conditions for In-DEBS test, J. Nucl. Fuel Cycle Waste Technol. 17 (2019) 15-24, https://doi.org/10.7733/jnfcwt.2019.17.S.15. 
  26. S. Yoon, W.H. Cho, C. Lee, G.Y. Kim, Thermal conductivity of Korean compacted bentonite buffer materials for a nuclear waste repository, Energies 11 (2018), https://doi.org/10.3390/en11092269. 
  27. J.-S. Kim, S. Yoon, W.-J. Cho, Y.-C. Choi, G.-Y. Kim, A study on the manufacturing characteristics and field applicability of engineering-scale bentonite buffer block in a high-level nuclear waste repository, J. Nucl. Fuel Cycle Waste Technol. 16 (2018) 123-136, https://doi.org/10.7733/jnfcwt.2018.16.1.123. 
  28. W.J. Cho, C. Lee, G.Y. Kim, Feasibility analysis of the multilayer and multicanister concepts for a geological spent fuel repository, Nucl. Technol. 200 (2017) 225-240, https://doi.org/10.1080/00295450.2017.1369804. 
  29. J. Rutqvist, D. Barr, J.T. Birkholzer, K. Fujisaki, O. Kolditz, Q.S. Liu, T. Fujita, W. Wang, C.Y. Zhang, A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories, Environ. Geol. 57 (2009) 1347-1360, https://doi.org/10.1007/s00254-008-1552-1. 
  30. S. Park, S. Yoon, S. Kwon, M.S. Lee, G.Y. Kim, Temperature effect on the thermal and hydraulic conductivity of Korean bentonite buffer material, Prog. Nucl. Energy 137 (2021) 103759, https://doi.org/10.1016/j.pnucene.2021.103759.