DOI QR코드

DOI QR Code

Effect of supplementary cementitious materials on the degradation of cement-based barriers in radioactive waste repository: A case study in Korea

  • Min-Seok Kim (Department of Nuclear and Quantum Engineering, KAIST) ;
  • Sol-Chan Han (Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory) ;
  • Jong-Il Yun (Department of Nuclear and Quantum Engineering, KAIST)
  • Received : 2023.10.06
  • Accepted : 2024.04.26
  • Published : 2024.09.25

Abstract

This study focuses on investigating the chemical degradation characteristics of cementitious barriers used in low-and intermediate-level radioactive waste repository by reactive transport modeling. The impact of the blending with supplementary cementitious materials (SCMs) in the barriers on the chemical degradation was evaluated to find the optimum barrier design. A number of different barrier designs were examined by replacing ordinary Portland cement (OPC) by SCMs (i.e., fly ash, silica fume, and blast-furnace slag). The simulation results showed that silica fume blended barrier has better durability against chemical degradation by rainwater compared to fly ash or blast-furnace slag blended barriers. In addition, the chemical durability of silica fume-based barrier increased with increasing replacement level up to about 20 %. It seems that the amount of formed calcium silicate hydrate (CSH) in the initial cement-based barrier highly affects the overall chemical durability. The newly developed reactive transport model demonstrated its capability for understanding the barrier performance and investigating the optimal design of the barrier system.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (Ministry of Trade, Industry and Energy (MOTIE)) (No. 2021040101003C).

References

  1. P.V. Brady, M.W. Kozak, Geochemical engineering of low level radioactive waste in cementitious environments, Waste Manag. 15 (1995) 293-301, https://doi.org/10.1016/0956-053X(95)00028-X.
  2. S. Goni, A. Guerrero, M.S. Hernandez, Spanish LLW and MLW disposal: durability of cemented materials in (Na, K)Cl simulated radioactive liquid waste, Waste Manag. 21 (2001) 69-77, https://doi.org/10.1016/S0956-053X(00)00040-4.
  3. L. Trotignon, V. Devallois, H. Peycelon, C. Tiffreau, X. Bourbon, Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste, Phys. Chem. Earth, Parts A/B/C 32 (2007) 259-274, https://doi.org/10.1016/j.pce.2006.02.049.
  4. Y. Jo, S.-C. Han, S.-I. Ok, S. Choi, J.-I. Yun, Radiotoxicity flux and concentration as complementary safety indicators for the safety assessment of a rock-cavern type LILW repository, Nucl. Eng. Technol. 50 (2018) 1324-1329, https://doi.org/10.1016/j.net.2018.07.014.
  5. M. Ochs, D. Mallants, L. Wang, Radionuclide and Metal Sorption on Cement and Concrete, Springer International Publishing, Cham, 2016, https://doi.org/10.1007/978-3-319-23651-3.
  6. D. Jacques, J. Perko, S.C. Seetharam, D. Mallants, A cement degradation model for evaluating the evolution of retardation factors in radionuclide leaching models, Appl. Geochem. 49 (2014) 143-158, https://doi.org/10.1016/j.apgeochem.2014.06.008.
  7. B. Huet, V. L'Hostis, F. Miserque, H. Idrissi, Electrochemical behavior of mild steel in concrete: influence of pH and carbonate content of concrete pore solution, Electrochim. Acta 51 (2005) 172-180, https://doi.org/10.1016/j.electacta.2005.04.014.
  8. D. Jacques, Q.T. Phung, J. Perko, S.C. Seetharam, N. Maes, S. Liu, L. Yu, B. Rogiers, E. Laloy, Towards a scientific-based assessment of long-term durability and performance of cementitious materials for radioactive waste conditioning and disposal, J. Nucl. Mater. 557 (2021) 153201, https://doi.org/10.1016/j.jnucmat.2021.153201.
  9. E.-I. Yang, Y.-S. Choi, Characteristics of pore structures and compressive strength in calcium leached concrete specimens, J. Korea Concr. Inst. 23 (2011) 647-656, https://doi.org/10.4334/JKCI.2011.23.5.647.
  10. Y. Lee, H. Byeon, J. Park, P. Blanc, X. Bourbon, A. Lassin, E.C. Gaucher, Leachability of lead, cadmium, and antimony in cement solidified waste in a silo-type radioactive waste disposal facility environment, Nucl. Eng. Technol. 40 (2010) 851-866, https://doi.org/10.1016/j.net.2023.05.012.
  11. S.-C. Han, Y. Jo, J.-I. Yun, Chemical degradation of fly ash blended concrete with the seasonal variation of rainwater in a radioactive waste repository: a thermodynamic modeling approach, Cement Concr. Res. 141 (2021) 106326, https://doi.org/10.1016/j.cemconres.2020.106326.
  12. C.E. Watson, D. Savage, J. Wilson, C. Walker, S.J. Benbow, The long-term cement studies project: the UK contribution to model development and testing, Mineral. Mag. 76 (2012) 3445-3455, https://doi.org/10.1180/minmag.2012.076.8.58.
  13. J.C. Wilson, S. Benbow, R. Metcalfe, Reactive transport modelling of a cement backfill for radioactive waste disposal, Cement Concr. Res. 111 (2018) 81-93, https://doi.org/10.1016/j.cemconres.2018.06.007.
  14. N.C.M. Marty, I. Munier, E.C. Gaucher, C. Tournassat, S. Gaboreau, C.Q. Vong, E. Giffaut, B. Cochepin, F. Claret, Simulation of Cement/Clay Interactions: Feedback on the Increasing Complexity of Modelling Strategies, vol. 104, Transp. Porous Media, 2014, pp. 385-405, https://doi.org/10.1007/s11242-014-0340-5.
  15. G. Kosakowski, U. Berner, The evolution of clay rock/cement interfaces in a cementitious repository for low- and intermediate level radioactive waste, Phys. Chem. Earth, Parts A/B/C 64 (2013) 65-86, https://doi.org/10.1016/j.pce.2013.01.003.
  16. B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cement Concr. Res. 41 (2011) 1244-1256, https://doi.org/10.1016/j.cemconres.2010.12.001.
  17. K.-H. Yang, Y.-B. Jung, M.-S. Cho, S.-H. Tae, Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete, J. Clean. Prod. 103 (2015) 774-783, https://doi.org/10.1016/j.jclepro.2014.03.018.
  18. W. Kurdowski, Cement and Concrete Chemistry, Springer Netherlands, Dordrecht, 2014, https://doi.org/10.1007/978-94-007-7945-7.
  19. K. Sobolev, The development of a new method for the proportioning of high-performance concrete mixtures, Cem. Concr. Compos. 26 (2004) 901-907, https://doi.org/10.1016/j.cemconcomp.2003.09.002.
  20. W.S. Park, J.E. Kim, N.Y. Eom, S.W. Kim, D.G. Kim, M.S. Cho, Mechanical properties of high strength concrete using mineral admixtures, Appl. Mech. Mater. 372 (2013) 235-238. https://doi.org/10.4028/www.scientific.net/AMM.372.235.
  21. S.Y. Oh, G. Lim, S. Nam, B.-S. Choi, T.S. Kim, H. Park, Effect of silica fume content in concrete blocks on laser-induced explosive spalling behavior, Nucl. Eng. Technol. 55 (2023) 1988-1993, https://doi.org/10.1016/j.net.2023.03.002.
  22. L. Lam, Y. Wong, C. Poon, Effect of fly ash and silica fume on compressive and fracture behaviors of concrete, Cement Concr. Res. 28 (1998) 271-283, https://doi.org/10.1016/S0008-8846(97)00269-X.
  23. V. Lilkov, I. Rostovsky, O. Petrov, Y. Tzvetanova, P. Savov, Long term study of hardened cement pastes containing silica fume and fly ash, Construct. Build. Mater. 60 (2014) 48-56, https://doi.org/10.1016/j.conbuildmat.2014.02.045.
  24. COMSOL Multiphysics, The COMSOL multiphysics reference manual, Manual (2015) 1-1336. https://www.comsol.com/blogs.
  25. D. Parkhurst, C. Appelo, User's guide to PHREEQC (ver 2) - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. https://pubs.usgs.gov/wri/1999/4259/report.pdf, 2002.
  26. A. Nardi, A. Idiart, P. Trinchero, L.M. de Vries, J. Molinero, Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry, Comput. Geosci. 69 (2014) 10-21, https://doi.org/10.1016/j.cageo.2014.04.011.
  27. E. Giffaut, M. Griv'e, P. Blanc, P. Vieillard, E. Colas, H. Gailhanou, S. Gaboreau, N. Marty, B. Mad'e, L. Duro, Andra thermodynamic database for performance assessment: ThermoChimie, Appl. Geochem. 49 (2014) 225-236, https://doi.org/10.1016/j.apgeochem.2014.05.007.
  28. D. Jacques, L. Wang, E. Martens, D. Mallants, Modelling chemical degradation of concrete during leaching with rain and soil water types, Cement Concr. Res. 40 (2010) 1306-1313, https://doi.org/10.1016/j.cemconres.2010.02.008.
  29. P. Blanc, X. Bourbon, A. Lassin, E.C. Gaucher, Chemical model for cement-based materials: temperature dependence of thermodynamic functions for nanocrystalline and crystalline C-S-H phases, Cement Concr. Res. 40 (2010) 851-866, https://doi.org/10.1016/j.cemconres.2009.12.004.
  30. A. Scholer, B. Lothenbach, F. Winnefeld, M. Zajac, Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder, Cem. Concr. Compos. 55 (2015) 374-382, https://doi.org/10.1016/j.cemconcomp.2014.10.001.
  31. A.C.A. Muller, K.L. Scrivener, J. Skibsted, A.M. Gajewicz, P.J. McDonald, Influence of silica fume on the microstructure of cement pastes: new insights from 1H NMR relaxometry, Cement Concr. Res. 74 (2015) 116-125, https://doi.org/10.1016/j.cemconres.2015.04.005.
  32. B. Lothenbach, G. Le Saout, E. Gallucci, K. Scrivener, Influence of limestone on the hydration of Portland cements, Cement Concr. Res. 38 (2008) 848-860, https://doi.org/10.1016/j.cemconres.2008.01.002.
  33. R.G.W. Vasconcelos, B. Walkley, S. Day, C.C. Tang, H. Paraskevoulakos, L. J. Gardner, C.L. Corkhill, 18-month hydration of a low-pH cement for geological disposal of radioactive waste: the Cebama reference cement, Appl. Geochem. 116 (2020) 104536, https://doi.org/10.1016/j.apgeochem.2020.104536.
  34. P.J. Tumidajski, A.S. Schumacher, S. Perron, P. Gu, J.J. Beaudoin, On the relationship between porosity and electrical resistivity in cementitious systems, Cement Concr. Res. 26 (1996) 539-544, https://doi.org/10.1016/0008-8846(96)00017-8.
  35. S. Schneider, D. Mallants, D. Jacques, Determining hydraulic properties of concrete and mortar by inverse modelling, MRS Proc 1475 (2012), https://doi.org/10.1557/opl.2012.601 imrc11-1475-nw35-p.60.
  36. J. Jeong, M. Kown, E. Park, Safety assessment of near surface disposal facility for low-and intermediate-level radioactive waste (LILW) through multiphase-fluid simulations based on various scenarios, Econ, Environ. Geol. 51 (2018) 131-147, https://doi.org/10.9719/EEG.2018.51.2.131.
  37. S. Ahmad, Reinforcement corrosion in concrete structures, its monitoring and service life prediction--a review, Cem. Concr. Compos. 25 (2003) 459-471, https://doi.org/10.1016/S0958-9465(02)00086-0.
  38. P.C. Hewlett, M. Liska, Lea's Chemistry of Cement and Concrete, Elsevier, 2019, https://doi.org/10.1016/C2013-0-19325-7.
  39. J. Zhang, Y. Huang, G. Ma, B. Nener, Mixture optimization for environmental, economical and mechanical objectives in silica fume concrete: a novel frame-work based on machine learning and a new meta-heuristic algorithm, Resour. Conserv. Recycl. 167 (2021) 105395, https://doi.org/10.1016/j.resconrec.2021.105395.