DOI QR코드

DOI QR Code

Understanding Users' Help-Seeking Intention & Willingness to Use Weight Management Apps: Interaction Effects of Stigma Based on Thinking or Feeling AI Types

체중조절 앱에 대한 도움요청과 활용의지의 이해: 이성적 또는 감성적 타입에 따른 낙인효과의 상호작용을 중심으로

  • FAN XUE (Department of Global Business Management, Kyunghee University ) ;
  • Kwon, So-Yeon (Department of Management Information System, Dongguk University)
  • Received : 2024.05.31
  • Accepted : 2024.08.05
  • Published : 2024.09.30

Abstract

The recent COVID-19 pandemic has witnessed the rapid growth of the fitness app market, with weight management apps occupying a substantial market segment. In connection, a growing body of research has been conducted to examine design elements aimed at fostering user motivation and long-term engagement, without considering user characteristics, which are critical to understanding user responses to weight-loss apps. Therefore, to fill this research gap, this research focuses on the weight stigma of users and strives to examine what affects such user characteristics have on the weight-loss apps. The main findings of this study is that higher help-seeking intention and willingness to use weight management apps among those who show high weight stigma consciousness than those with low consciousness. This study further shows the interaction effects between weight stigma consciousness AI types of service. This research provides new insights on how to design elements of weight-loss apps targeting both non-stigmatized and stigmatized users. It shows that in designing public applications, feeling-based AI that considers the psychological needs of users may be more effective for individuals with weight stigma.

코로나19 팬데믹을 기점으로 피트니스 앱 시장이 급격히 성장하였으며, 그 중 체중감량 앱 시장이 높은 비중을 차지하고 있다. 선행연구에서는 사용자들의 심리적인 특성에 대한 고려 없이 일반적인 동기부여 및 장기적인 참여 유도를 위한 디자인 요소 개발에 집중되어 있다는 한계가 있다. 따라서 본 연구는 체중 낙인이라는 사용자 특성에 초점을 맞추어, 이를 고려한 효과적인 디자인 요소로서 인공지능 유형을 제안하고자 설문 기반 실험연구를 진행하였다. 연구결과, 앱에 대한 사용자 반응은 체중낙인 인식의 정도에 따라 다르며, 체중낙인 인식에 따라 선호하는 서비스의 인공지능 유형이 다르게 나타나는 것으로 확인되었다. 본 연구 결과는 낙인을 겪는 사용자를 대상으로 다양한 인공지능 유형을 활용해 최적의 서비스를 제공할 수 있음을 시사한다. 공공 애플리케이션 설계 시, 사용자의 심리적 요구를 반영한 공감 기반 인공지능이 체중 낙인 사용자에게 더 효과적일 수 있음을 보여준다.

Keywords

References

  1. Almenara, C. A., Aime, A., Maiano, C., Ejova, A., Guevremont, G.,Bournival, C. & Ricard, M. M. (2017). "Weight Stigmatization and Disordered Eating in Obese Women: The Mediating Effects of Self-Esteem a nd Fear of Negative Appearance Evaluation." European Review of Applied Psychology, 67(3), 155-162.
  2. Bojd, B., Song, X., Tan, Y. & Yan, X. (2022). "Gamified Challenges in Online Weight-Loss Communities." Information Systems Research, 33(2), 718-736. https://doi.org/10.1287/isre.2021.1081
  3. Boyes, A. D. & Latner, J. D. (2009). "Weight Stigma in Existing Romantic Relationships." Journal of Sex & Marital Therapy, 35(4), 282-293. https://doi.org/10.1080/00926230902851280
  4. Chattaraman, V., Kwon, W. S., Gilbert, J. E. & Ross, K. (2019). "Should AI-Based, Conversational Digital Assistants Employ Social-or Task-Oriented Interaction Style? A Task-Competency and Reciprocity Perspective for Older Adults." Computers in Human Behavior, 90, 315-330. https://doi.org/10.1016/j.chb.2018.08.048
  5. Chen, J., Li, T., You, H., Wang, J., Peng, X. & Chen, B. (2023). "Behavioral Interpretation of Willingness to Use Wearable Health Devices in Community Residents: A Cross-sectional Study." International Journal of Environmental Research and Public Health, 20(4), 3247.
  6. Crocker, J. & Major, B. (1989). "Social Stigma and Self-Esteem: The Self-Protective Properties of Stigma." Psychological Review, 96(4), 608.
  7. Decker, K. M., Philip, S. R. & Thurston, I. B. (2022). "Measuring Weight and Shape-based Social Identity Threat Vulnerability in Young Adults." Body Image, 42, 136-144. https://doi.org/10.1016/j.bodyim.2022.06.003
  8. Emmer, C., Bosnjak, M. & Mata, J. (2020). "The Association between Weight Stigma and Mental Health: A Meta-Analysis." Obesity Reviews, 21(1), e12935.
  9. Fronczek, L. P., Mende, M., Scott, M. L., Nenkov, G. Y. & Gustafsson, A. (2023). "Friend or Foe? Can Anthropomorphizing Self-Tracking Devices Backfire on Marketers and Consumers?." Journal of the Academy of Marketing Science, 51(5), 1075-1097. https://doi.org/10.1007/s11747-022-00915-1
  10. Gao, L. & Waechter, K. A. (2017). "Examining the Role of Initial Trust in User Adoption of Mobile Payment Services: An Empirical Investigation." Information Systems Frontiers, 19, 525-548. https://doi.org/10.1007/s10796-015-9611-0
  11. Gursoy, D., Chi, O. H., Lu, L. & Nunkoo, R. (2019). "Consumers Acceptance of Artificially Intelligent (AI) Device Use in Service Delivery." International Journal of Information Management, 49, 157-169. https://doi.org/10.1016/j.ijinfomgt.2019.03.008
  12. Hayes, A. F. (2013). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-based Approach. The Guilford Press, New York, NY.
  13. Hayward, L. E., Neang, S., Ma, S. & Vartanian, L. R. (2020). "Discussing Weight with Patients with Overweight: Supportive (Not Stigmatizing) Conversations Increase Compliance Intentions and Health Motivation." Stigma and Health, 5(1), 53.
  14. Himes, S. M. & Thompson, J. K. (2007). "Fat Stigmatization in Television Shows and Movies: A Content Analysis." Obesity, 15(3), 712-718. https://doi.org/10.1038/oby.2007.635
  15. Holthower, J. & vanDoorn, J. (2023). "Robots Do Not Judge: Service Robots Can Alleviate Embarrassment in Service Encounters." Journal of the Academy of Marketing Science, 51(4), 767-784. https://doi.org/10.1007/s11747-022-00862-x
  16. Hong, C. & Slevitch, L. (2018). "Determinants of Customer Satisfaction and Willingness to Use Self-service Kiosks in the Hotel Industry." Journal of Tourism & Hospitality, 7(5), 1-7.
  17. Huang, M. H. & Rust, R. T. (2018). "Artificial Intelligence in Service." Journal of Service Research, 21(2), 155-172. https://doi.org/10.1177/1094670517752459
  18. Huang, M. H. & Rust, R. T. (2021). "Engaged to a Robot? The Role of AI in Service." Journal of Service Research, 24(1), 30-41.
  19. Jang, C., Heo, D. & Sung, W. (2023). "Effects on the Continuous Use Intention of AI-based Voice Assistant Services: Focusing on the Interaction between Trust in AI and Privacy Concerns." Informatization Policy, 30(2), 22-45.  https://doi.org/10.22693/NIAIP.2023.30.2.022
  20. Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., Rickman, A. D., Wahed, A. S. & Belle, S. H. (2016). "Effect of Wearable Technology Combined with a Lifestyle Intervention on Long-Term Weight Loss: The IDEA Randomized Clinical Trial." JAMA, 316(11), 1161-1171. https://doi.org/10.1001/jama.2016.12858
  21. Jin, S. V. & Youn, S. (2021). "Why Do Consumers with Social Phobia Prefer Anthropomorphic Customer Service Chatbots? Evolutionary Explanations of the Moderating Roles of Social Phobia." Telematics and Informatics, 62, 101644.
  22. Kim, J., Merrill Jr, K. & Collins, C. (2021). "AI as a Friend or Assistant: The Mediating Role of Perceived Usefulness in Social AI vs. Functional AI." Telematics and Informatics, 64, 101694.
  23. Kim, T. W., Jiang, L., Duhachek, A., Lee, H. & Garvey, A. (2022). "Do You Mind If I Ask You a Personal Question? How AI Service Agents Alter Consumer Self-Disclosure." Journal of Service Research, 25(4), 649-666. https://doi.org/10.1177/10946705221120232
  24. Lee, N., Lee, J. & Hwang, K. (2014). "A Study on Research Framework and Research Trends in the Healthcare Information Technology Area." Informatization Policy, 21(3), 3-32.  https://doi.org/10.22693/NIAIP.2014.21.3.003
  25. Lu, L., Cai, R. & Gursoy, D. (2019). "Developing and Validating a Service Robot Integration Willingness Scale." International Journal of Hospitality Management, 80, 36-51.
  26. Lupton, D. (2016). The Quantified Self. John Wiley & Sons.
  27. Mende, M., Scott, M. L., Ubal, V. O., Hassler, C. M., Harmeling, C. M. & Palmatier, R. W. (2024). "Personalized Communication as a Platform for Service Inclusion? Initial Insights into Interpersonal and AI-Based Personalization for Stigmatized Consumers." Journal of Service Research, 27(1), 28-48. https://doi.org/10.1177/10946705231188676
  28. Mensinger, J. L., Tylka, T. L. & Calamari, M. E. (2018). "Mechanisms Underlying Weight Status and Healthcare Avoidance in Women: A Study of Weight Stigma, Body-Related Shame and Guilt, and Healthcare Stress." Body Image, 25, 139-147. https://doi.org/10.1016/j.bodyim.2018.03.001
  29. Nezami, B. T., Hurley, L., Power, J., Valle, C. G. & Tate, D. F. (2022). "A Pilot Randomized Trial of Simplified Versus Standard Calorie Dietary Self? Monitoring in a Mobile Weight Loss Intervention." Obesity, 30(3), 628-638. https://doi.org/10.1002/oby.23377
  30. Pantano, E. & Scarpi, D. (2022). "I, Robot, You, Consumer: Measuring Artificial Intelligence Types and Their Effect on Consumers Emotions in Service." Journal of Service Research, 25(4), 583-600. https://doi.org/10.1177/10946705221103538
  31. Park, J., Shim, W. & Lee, J. (2018). "A study for Promoting Digital Healthcare in Korea through an Improved Regulatory System." Informatization Policy, 25(1), 60-81.  https://doi.org/10.22693/NIAIP.2018.25.1.060
  32. Puhl, R. M., Andreyeva, T. & Brownell, K. D. (2008). "Perceptions of Weight Discrimination: Prevalence and Comparison to Race and Gender Discrimination in America." International Journal of Obesity, 32(6), 992-1000. https://doi.org/10.1038/ijo.2008.22
  33. Puhl, R. M. & Heuer, C. A. (2009). "The Stigma of Obesity: A Review and Update." Obesity, 17(5), 941-964. https://doi.org/10.1038/oby.2008.636
  34. Puhl, R. M., Lessard, L. M., Himmelstein, M. S. & Foster, G. D. (2021). "The Roles of Experienced and Internalized Weight Stigma in Healthcare Experiences: Perspectives of Adults Engaged in Weight Management across Six Countries." Plos One, 16(6), e0251566.
  35. Roehling, M. V., Roehling, P. V. & Pichler, S. (2007). "The Relationship between Body Weight and Perceived Weight-Related Employment Discrimination: The Role of Sex and Race." Journal of Vocational Behavior, 71(2), 300-318.
  36. Statista (2024). "Leading Fitness and Sport Apps Worldwide in January 2024, by Revenue." https://www.statista.com/statistics/1239716/top-fitness-and-sport-apps-by-revenue. (Retrieved on May 25, 2024).
  37. Statista Market Insights (2024). "Fitness Apps - Worldwide." https://www.statista.com/outlook/hmo/digital-health/digital-fitness-well-being/health-wellness-coaching/fitness-apps/worldwide#revenue. (Retrieved on May 25, 2024).
  38. Tang, J., Abraham, C., Stamp, E. & Greaves, C. (2015). "How Can Weight? Loss App Designers' Best Engage and Support Users? A Qualitative Investigation." British Journal of Health Psychology, 20(1), 151-171. https://doi.org/10.1111/bjhp.12114
  39. Taylor, J. W., Houlahan, J. J. & Gabriel, A. C. (1975). "The Purchase Intention Question in New Product Development: A Field Test." Journal of Marketing, 39(1), 90-92. https://doi.org/10.1177/002224297503900119
  40. Vogel, D. L., Wade, N. G. & Hackler, A. H. (2007). "Perceived Public Stigma and the Willingness to Seek Counseling: The Mediating Roles of Self-stigma and Attitudes toward Counseling." Journal of Counseling Psychology, 54(1), 40-50. https://doi.org/10.1037/0022-0167.54.1.40
  41. Xu, Y., Zhang, J. &Deng, G. (2022). "Enhancing Customer Satisfaction with Chatbots: The Influence of Communication Styles and Consumer Attachment Anxiety." Frontiers in Psychology, 13, 902782.
  42. Youn, S. & Jin, S. V. (2021). "In AI We Trust?" The Effects of Parasocial Interaction and Technopian Versus Luddite Ideological Views on Chatbot-Based Customer Relationship Management in the Emerging "Feeling Economy." Computers in Human Behavior, 119, 106721.