DOI QR코드

DOI QR Code

Cluster Analysis for E-Government User Typology: By Purpose of Use, Channel of Use, and Perception of Information & Communication Technology

전자정부 이용자 유형화를 위한 군집분석: 전자정부 이용 목적, 이용채널, 정보통신기술에 대한 주관적 인식을 기준으로

  • Received : 2024.05.16
  • Accepted : 2024.07.08
  • Published : 2024.09.30

Abstract

In the modern era of digital sophistication, effective public administration warrants a citizen-centric approach that not only anticipates the needs of public service users but also comprehends their behaviors in undertaking proactive measures to deliver public services as needed. This study adopts a typological perspective by viewing e-government users as distinct consumer groups with individualized demands, behavioral tendencies, and perceptual attributes. Utilizing data from a 2021 survey on e-government service utilization, a two-step cluster analysis was conducted to delineate user typology through an empirical study. The analysis incorporated variables such as the purpose of using e-government, selected e-government channels, subjective perceptions of technological risk, and personal innovativeness. Accordingly, e-government users were classified into five distinct typological groups labeled "Unilateral Active Users Geared to Social Media," "Versatile Power Users," "Unilateral Pragmatic Active Users," "Occasional Passive Users," and "Minimal Users." This typological differentiation of e-government user groups is intended to help identify unique user demands and characteristics so as to facilitate the delivery of tailored e-government services and informed policy decisions catering to the diverse needs of users.

오늘날의 디지털 심화 환경에서 행정은 공공서비스 이용자의 필요를 예측하고 행태를 이해하며, 때로는 선제적으로 공공서비스를 제공하는 시민 중심적 시각을 필요로 한다. 본 연구는 전자정부 이용자를 독특한 수요와 행태적·인식적 특성을 가진 서비스 수요자로 간주하고, 이용자 특성을 기준으로 전자정부 이용자 집단을 유형화하였다. 실증분석을 통한 유형 도출을 위해 2021년 전자정부서비스 이용실태조사 데이터를 활용한 2단계 군집분석을 수행하였다. 군집분석에는 전자정부 이용 목적, 이용자가 선택한 전자정부 채널, 이용자의 주관적 기술위험인식과 개인 혁신성 등을 고려하였다. 분석결과에 따르면 전자정부 이용자는, 'SNS 기반 일방향 적극 이용자', '다재다능한 적극적 파워 이용자', '일방향 실용적 적극 이용자', '간헐적 소극 이용자', 그리고 '소극적 최소 이용자'의 총 5가지 그룹으로 세분화되었다. 전자정부 이용자 유형에 따른 집단 구분은 유형 별로 고유한 수요와 이용자로서의 특성을 파악하는 데 유용하여 수요자 맞춤형 전자정부서비스를 제공하기 위한 정책적 시사점의 발굴에 기여할 것으로 기대된다.

Keywords

Acknowledgement

This work was supported by Korea University (K2311751, 2023)

References

  1. Agarwal, R. & Prasad, J. (1998). "A conceptual and operational definition of personal innovativeness in the domain of information technology." Information systems research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204
  2. Akram, M. S., Malik, A., Shareef, M. A. & Goraya, M. A. S. (2019). "Exploring the interrelationships between technological predictors and behavioral mediators in online tax filing: The moderating role of perceived risk." Government Information Quarterly, 36(2), 237-251. https://doi.org/10.1016/j.giq.2018.12.007
  3. Al Khattab, A., Al-Shalabi, H., Al-Rawad, M., Al-Khattab, K. & Hamad, F. (2015). "The effect of trust and risk perception on citizen's intention to adopt and use e-government services in Jordan." Journal of service science and management, 8(03), 279.
  4. Augusto, M. G., Lisboa, J. V. & Yasin, M. M. (2014). "The mediating role of innovation on strategic orientation and performance." International Journal of Business Innovation and Research, 8(3), 282-299. https://doi.org/10.1504/IJBIR.2014.060828
  5. Belanger, F. & Carter, L. (2008). "Trust and risk in e-government adoption." The journal of strategic information systems, 17(2), 165-176. https://doi.org/10.1016/j.jsis.2007.12.002
  6. Benassi, M., Garofalo, S., Ambrosini, F., Sant'Angelo, R. P. & Giovagnoli, S. (2020). "Using two-step cluster analysis and latent class cluster analysis to classify the cognitive heterogeneity of cross-diagnostic psychiatric inpatients." Frontiers in Psychology, 11, 516407.
  7. Bertot, J. C., Jaeger, P. T. & Grimes, J. M. (2010). "Using ICTs to create a culture of transparency: E-government and social media as openness and anti-corruption tools for societies." Government Information Quarterly, 27(3), 264-271. https://doi.org/10.1016/j.giq.2010.03.001
  8. Bertot, J. C., Jaeger, P. T., Munson, S. & Glaisyer, T. (2010). "Social media technology and government transparency." Computer, 43(11), 53-59. https://doi.org/10.1109/MC.2010.325
  9. Bertot, J. C., Jaeger, P. T. & Hansen, D. (2012). "The impact of policies on government social media usage: Issues, challenges, and recommendations." Government Information Quarterly, 29(1), 30-40. https://doi.org/10.1016/j.giq.2011.04.004
  10. Bingham, L. B., Nabatchi, T. & O'Leary, R. (2005). "The new governance: Practices and processes for stakeholder and citizen participation in the work of government." Public Administration Review, 65(5), 547-558. https://doi.org/10.1111/j.1540-6210.2005.00482.x
  11. Burdon, S., Al-Kilidar, H. & Mooney, G. (2013). "Evaluating an organisation's cultural readiness for innovation." International Journal of Business Innovation and Research, 7(5), 572-589. https://doi.org/10.1504/IJBIR.2013.056179
  12. Carlson, J. R. & Zmud, R. W. (1999). "Channel expansion theory and the experiential nature of media richness perceptions." Academy of Management Journal, 42(2), 153-170. https://doi.org/10.2307/257090
  13. Carter, L. & Belanger, F. (2005). "The utilization of e-government services: citizen trust, innovation and acceptance factors." Information Systems Journal, 15(1), 5-25. https://doi.org/10.1111/j.1365-2575.2005.00183.x
  14. Charalabidis, Y. & Loukis, E. (2012). "Participative public policy making through multiple social media platforms utilization." International Journal of Electronic Government Research (IJEGR), 8(3), 78-97. https://doi.org/10.4018/jegr.2012070105
  15. Daft, R. L., Lengel, R. H. & Trevino, L. K. (1987). "Message equivocality, media selection, and manager performance: Implications for information systems." MIS quarterly, 355-366.
  16. Distel, B. & Becker, J. (2017). All citizens are the same, aren't they?-Developing an e-government user typology. In Electronic Government: 16th IFIP WG 8.5 International Conference, EGOV 2017, St. Petersburg, Russia, September 4-7, 2017, Proceedings 16 (pp. 336-347). Springer International Publishing.
  17. Doong, H. S., Wang, H. C. & Foxall, G. R. (2010). "Psychological traits and loyalty intentions towards e-Government services." International Journal of Information Management, 30(5), 457-464. https://doi.org/10.1016/j.ijinfomgt.2010.01.007
  18. D'Urso, S. C. & Rains, S. A. (2008). "Examining the scope of channel expansion: A test of channel expansion theory with new and traditional communication media." Management Communication Quarterly, 21(4), 486-507. https://doi.org/10.1177/0893318907313712
  19. Dwivedi, Y. K., Rana, N. P., Janssen, M., Lal, B., Williams, M. D. & Clement, M. (2017). "An empirical validation of a unified model of electronic government adoption (UMEGA)." Government Information Quarterly, 34(2), 211-230. https://doi.org/10.1016/j.giq.2017.03.001
  20. Featherman, M. S. & Pavlou, P. A. (2003). "Predicting e-services adoption: a perceived risk facets perspective." International journal of human-computer studies, 59(4), 451-474. https://doi.org/10.1016/S1071-5819(03)00111-3
  21. Fraboni, F., Prati, G., Casu, G., De Angelis, M. & Pietrantoni, L. (2022). "A cluster analysis of cyclists in Europe: Common patterns, behaviors, and attitudes." Transportation, 49(2), 591-620. https://doi.org/10.1007/s11116-021-10187-3
  22. Guo, J., Liu, N., Wu, Y. & Zhang, C. (2021). "Why do citizens participate on government social media accounts during crises? A civic voluntarism perspective." Information & Management, 58(1), 103286.
  23. Harantova, V., Mazanec, J., Stefancova, V., Masek, J. & Foltynova, H. B. (2023). "Two-step cluster analysis of passenger mobility segmentation during the COVID-19 pandemic." Mathematics, 11(3), 583.
  24. Hiziroglu, A. (2013). "Soft computing applications in customer segmentation: State-of-art review and critique." Expert Systems with Applications, 40(16), 6491-6507. https://doi.org/10.1016/j.eswa.2013.05.052
  25. Ho, A. T. (2002). "Reinventing local governments and the e-government initiative." Public Administration Review, 62(4), 434-444. https://doi.org/10.1111/0033-3352.00197
  26. Hofmann, S., Rackers, M. & Becker, J. (2012). Identifying factors of e-government acceptance-A literature review.
  27. Hsiao, C. H., Wang, H. C. & Doong, H. S. (2012). A study of factors influencing e-government service acceptance intention: A multiple perspective approach . In _Advancing Democracy, Government and Governance: Joint International Conference on Electronic Government and the Information Systems Perspective, and Electronic Democracy, EGOVIS/EDEM 2012, Vienna, Austria, September 3-6, 2012. Proceedings 1_ (pp. 79-87). Springer Berlin Heidelber
  28. Hertzum, M. (2022). "Citizens' information behavior in relation to electronic-government services: a systematic review." Journal of Documentation, 78(6), 1437-1456. https://doi.org/10.1108/JD-10-2021-0212
  29. Jaeger, P. T. (2003). "The endless wire: E-government as global phenomenon." Government information quarterly, 20(4), 323-331. https://doi.org/10.1016/j.giq.2003.08.003
  30. Joo, Y. J., Lee, H. W. & Ham, Y. (2014). "Integrating user interface and personal innovativeness into the TAM for mobile learning in Cyber University." Journal of Computing in Higher Education, 26, 143-158. https://doi.org/10.1007/s12528-014-9081-2
  31. Khan, A. & Krishnan, S. (2021). "Citizen engagement in co-creation of e-government services: A process theory view from a meta-synthesis approach." Internet Research, 31(4), 1318-1375. https://doi.org/10.1108/INTR-03-2020-0116
  32. Kim, B. S., Lee, Jung & Kim, K. G. (2006). "The Effects of Perceived Trust, Risk, Usefulness, and Convenience on the Intention to Use e-Government civil service: focusing on online civil service information and Complaint Service." Informatization Policy, 13(4), 186-202. 
  33. Lee, H. J., Lee, M., Lee, H. & Cruz, R. A. (2021). "Mining service quality feedback from social media: A computational analytics method." Government Information Quarterly, 38(2), 101571.
  34. Lu, J. (2014). "Are personal innovativeness and social influence critical to continue with mobile commerce?" Internet research, 24(2), 134-159. https://doi.org/10.1108/IntR-05-2012-0100
  35. Marchionini, G., Samet, H. & Brandt, L. (2003). Digital government. Communications of the ACM, 46(1), 25-27.
  36. Midgley, D. F., & Dowling, G. R. (1978). Innovativeness: The concept and its measurement. Journal of consumer research, 4(4), 229-242. https://doi.org/10.1086/208701
  37. Min, J. Y. (2022). "Relationship between Humans and Social Media Explored in Literature: From the Perspectives of Users, Industries, and Society." Informatization Policy, 29(3), 3-25.  https://doi.org/10.22693/NIAIP.2022.29.3.003
  38. Ministry of the Interior and Safety. (2022). "More than 9 out of 10 Citizens Use E-Government Services." https://www.mois.go.kr/frt/bbs/type010/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000008&nttId=97628. (Retrieved on September 15, 2024). 
  39. Muller, A. P. R., Lerusse, A., Steen, T. & Van de Walle, S. (2021). "Understanding channel choice in users' reporting behavior: Evidence from a smart mobility case." Government Information Quarterly, 38(1), 101540.
  40. Nam, T. (2014). "Determining the type of e-government use." Government information quarterly, 31(2), 211-220. https://doi.org/10.1016/j.giq.2013.09.006
  41. Olave, B. M. T. (2019). "Underestimating the gender gap? An exploratory two-step cluster analysis of STEM labor segmentation and its impact on women." Journal of Women and Minorities in Science and Engineering, 25(1).
  42. Pavlou, P. A. (2003). "Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model." International journal of electronic commerce, 7(3), 101-134.
  43. Reddick, C. & Anthopoulos, L. (2014). "Interactions with e-government, new digital media, and traditional channel choices: Citizen-initiated factors." Transforming Government: People, Process, and Policy, 8(3), 398-419. https://doi.org/10.1108/TG-01-2014-0001
  44. Reddick, C., G., Abdelsalam, H. M. & Elkadi, H. A. (2012). "Channel choice and the digital divide in e-government: The case of Egypt." Information Technology for Development, 18(3), 226-246. https://doi.org/10.1080/02681102.2011.643206
  45. Reddick, C., Zheng, Y. & Perlman, B. (2020). "Channel choice in China: Correlates and determinates of satisfaction and use of government service channels in a survey of Chinese cities." Transforming Government: People, Process, and Policy, 14(1), 81-100. https://doi.org/10.1108/TG-11-2019-0105
  46. Rey-Moreno, M. & Medina-Molina, C. (2017). "Inhibitors of e-Government adoption: Determinants of habit and adoption intentions." Journal of Innovation & Knowledge, 2(3), 172-180. https://doi.org/10.1016/j.jik.2017.01.001
  47. Rey-Moreno, M., Medina-Molina, C. & Barrera-Barrera, R. (2018). "Multichannel strategies in public services: Levels of satisfaction and citizens' preferences." International Review on Public and Nonprofit Marketing, 15, 9-24. https://doi.org/10.1007/s12208-017-0188-9
  48. Roehrich, G. (2004). "Consumer innovativeness: Concepts and measurements." Journal of business research, 57(6), 671-677.
  49. Rowe, W. D. (1975). An "Anatomy" of risk. Environmental Protection Agency.
  50. Schaupp, L. C., Carter, L. & McBride, M. E. (2010). "E-file adoption: A study of US taxpayers' intentions." Computers in Human Behavior, 26(4), 636-644. https://doi.org/10.1016/j.chb.2009.12.017
  51. Schiopu, D. (2010). "Applying TwoStep cluster analysis for identifying bank customers' profile." Buletinul, 62(3), 66-75.
  52. Scholta, H., Halsbenning, S., Distel, B. & Becker, J. (2020). Walking a mile in their shoes-a citizen journey to explore public service delivery from the citizen perspective. In Electronic Government: 19th IFIP WG 8.5 International Conference, EGOV 2020, Linkoping, Sweden, August 31-September 2, 2020, Proceedings 19 (pp. 164-178). Springer International Publishing.
  53. Scholta, H., Mertens, W., Kowalkiewicz, M. & Becker, J. (2019). "From one-stop shop to no-stop shop: An e-government stage model." Government Information Quarterly, 36(1), 11-26. https://doi.org/10.1016/j.giq.2018.11.010
  54. Shahapure, K. R. & Nicholas, C. (2020). Cluster quality analysis using silhouette score. In _2020 IEEE 7th international conference on data science and advanced analytics (DSAA)_ (pp. 747-748). IEEE.
  55. Stieglitz, S., Bunker, D., Mirbabaie, M. & Ehnis, C. (2018). "Sense-making in social media during extreme events." Journal of Contingencies and Crisis Management, 26(1), 4-15. https://doi.org/10.1111/1468-5973.12193
  56. Sung, W. J. (2023). "Revisiting the e-Government Maturity Model: Significance, Limitations, and Suggestions." Informatization Policy, 30(3), 3-28.  https://doi.org/10.22693/NIAIP.2023.30.3.003
  57. Tang, Z., Chen, L., Zhou, Z., Warkentin, M. & Gillenson, M. L. (2019). "The effects of social media use on control of corruption and moderating role of cultural tightness-looseness." Government Information Quarterly, 36(4), 101384.
  58. Torki Biucky, S., Abdolvand, N. & Rajaee Harandi, S. (2017). "The effects of perceived risk on social commerce adoption based on TAM model." International Journal of Electronic Commerce Studies.
  59. van Deursen, A. & Pieterson, W. (2006, June). The Internet as a service channel in the public sector. In ICA Conference Dresden, Germany (Vol. 150).
  60. Warkentin, M., Gefen, D., Pavlou, P. A. & Rose, G. M. (2002). "Encouraging citizen adoption of e-government by building trust." Electronic markets, 12(3), 157-162. https://doi.org/10.1080/101967802320245929
  61. West, D. M. (2004). "E-government and the transformation of service delivery and citizen attitudes." Public administration review, 64(1), 15-27. https://doi.org/10.1111/j.1540-6210.2004.00343.x
  62. Wu, L., Li, J. Y. & Fu, C. Y. (2011). "The adoption of mobile healthcare by hospital's professionals: An integrative perspective." Decision support systems, 51(3), 587-596. https://doi.org/10.1016/j.dss.2011.03.003
  63. Xiong, X. F., Yang, Y., Wei, L., Xiao, Y., Li, L. & Sun, L. (2021). "Identification of two novel subgroups in patients with diabetes mellitus and their association with clinical outcomes: A two-step cluster analysis." Journal of Diabetes Investigation, 12(8), 1346-1358. https://doi.org/10.1111/jdi.13494
  64. Zarmpou, T., Saprikis, V., Markos, A. & Vlachopoulou, M. (2012). "Modeling users' acceptance of mobile services." Electronic Commerce Research, 12, 225-248. https://doi.org/10.1007/s10660-012-9092-x
  65. Zhao, L., Lu, Y. & Gupta, S. (2012). "Disclosure intention of location-related information in location-based social network services." International Journal of Electronic Commerce, 16(4), 53-90. https://doi.org/10.2753/JEC1086-4415160403