DOI QR코드

DOI QR Code

Dynamic response of FG carbon nanotubes nanoplates embedded in elastic media under moving point load

  • Mohamed A Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Ismail Esen (Department of Mechanical Engineering, Karabuk University) ;
  • Alaa A. Abdelrahman (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Azza M. Abdraboh (Physics Department, Faculty of Science, Benha University)
  • 투고 : 2021.12.30
  • 심사 : 2024.09.10
  • 발행 : 2024.09.25

초록

This work aims to study and analyse the dynamic size dependent behvior of functionally graded carbon nanotubes (FGCNTs) nanoplates embedded in elastic media and subjected to moving point load. The non-classical effect is incorporated into the governing equations using the nonlocal strain gradient theory (NSGT). Four different reinforcement configurations of the carbon nanotubes (CNTs) are considered to show the effect of reinforcement configuration on the dynamic behvior of the FGCNTs nanoplates. The material characteristics of the functionally graded materials are assumed to be continuously distributed throughout the thickness direction according to the power law. The Hamiltonian principle is exploited to derive the dynamic governing equations of motion and the associated boundary conditions in the framework of the first order shear deformation plate theory. The Navier analytical approach is adopted to solve the governing equations of motion. The obtained solution is checked by comparing the obtained results with the available results in the literature and the comparison shows good agreement. Numerical results are obtained and discussed. Obtained results showed the significant impact of the elastic foundation parameters, the non-classical material parameters, the CNT configurations, and the volume fractions on the free and forced vibration behaviors of the FGCNT nanoplate embedded in two parameters elastic foundation and subjected to moving load.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grand no. (GPIP: 375-135-2024). The Authors, therefore, acknowledge with thanks DSR for technical and financial support.

참고문헌

  1. Abdelrahman, A.A., Esen, I., Daikh, A.A. and Eltaher, M.A. (2021c), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2021.1999263
  2. Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021b), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008
  3. Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M. A. and Assie, A.E. (2021a), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515
  4. Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1838298
  5. Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389
  6. Analooei, H.R., Azhari, M. and Salehipour, H. (2021), "Thermo-electro-mechanical vibration and buckling analysis of quadrilateral and triangular nanoplates with the nonlocal finite strip method", Mech. Based Des. Struct., 1-21. https://doi.org/10.1080/15397734.2021.1875331
  7. Arefi, M. and Soltan Arani, A.H. (2018), "Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments", Mech. Based Des. Struct., 46(6), 669-692. https://doi.org/10.1080/15397734.2018.1434002
  8. Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360021-01224-2
  9. Atmane, H.A., Tounsi, A. and Mechab, I. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
  10. Babaei, M., Asemi, K. and Kiarasi, F. (2021), "Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials", Thin Wall. Struct., 164, 107852. https://doi.org/10.1016/j.tws.2021.107852
  11. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393
  12. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002
  13. Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M., (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239. https://doi.org/10.12989/anr.2021.11.3.239
  14. Bouazza, M. and Zenkour, A.M. (2020), "Vibration of carbon nanotube-reinforced plates via refined n th-higher-order theory", Arch. Appl. Mech., 90(8), 1755-1769. https://doi.org/10.1007/s00419-020-01694-3
  15. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M. A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643
  16. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021a), "Buckling Analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250
  17. Daikh, A. A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021b), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8
  18. Daikh. A.A., Houari, M.S.A. and Eltaher, M.A. (2021c), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347
  19. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115
  20. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://doi.org/10.12989/sem.2021.80.1.063
  21. Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
  22. Ebrahimi, F., Dabbagh, A., Tornabene, F. and Civalek, O. (2019), "Hygro-thermal effects on wave dispersion responses of magnetostrictive sandwich nanoplates", Adv. Nano Res., 7(3), 157. https://doi.org/10.12989/anr.2019.7.3.157
  23. Eglin, M., Eriksson, M.A. and Carpick, R.W. (2006), "Microparticle manipulation using inertial forces", Appl. Phys. Lett., 88(9), 091913. https://doi.org/10.1063/1.2172401
  24. Eltaher, M.A., Abdelrahman, A.A. and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Eur. Phys. J. Plus, 136(7), 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8
  25. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. http://doi.org/10.1016/j.amc.2014.03.028
  26. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7
  27. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021d), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9.
  28. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5
  29. Esen, I., Daikh, A.A. and Eltaher, M.A. (2021c), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7
  30. Esen, I., Eltaher, M. A. and Abdelrahman, A.A. (2021e), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2021.1904255
  31. Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552
  32. Esmaeilzadeh, M., Esmaeil Golmakani, M., Kadkhodayan, M., Amoozgar, M. and Bodaghi, M. (2021), "Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates", Adv. Nano Res., 10(2), 151-163. https://doi.org/10.12989/anr.2021.10.2.151
  33. Esmaeilzadeh, M., Golmakani, M.E. and Sadeghian, M. (2020), "A nonlocal strain gradient model for nonlinear dynamic behavior of bi-directional functionally graded porous nanoplates on elastic foundations", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2020.1845965
  34. Farahmand, H. (2021), "A variational approach for analytical buckling solution of moderately thick microplate using strain gradient theory incorporating two-variable refined plate theory: A benchmark study", J. Brazil. Soc. Mech. Sci. Eng., 43(3), 1-11. https://doi.org/10.1007/s40430-020-02766-9
  35. Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193(17-20), 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
  36. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2021), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct., 49(6), 811-840. https://doi.org/10.1080/15397734.2019.1701490
  37. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/https://doi.org/10.1016/j.commatsci.2006.06.011
  38. Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2020), "Effects of surface energy and surface residual stresses on vibro-thermal analysis of chiral, zigzag, and armchair types of SWCNTs using refined beam theory", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2020.1754239
  39. Kachapi, S.H. (2020), "Surface/interface approach in pull-in instability and nonlinear vibration analysis of fluid-conveying piezoelectric nanosensor", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1725566
  40. Khadir, A.I., Daikh A.A, Eltaher, M.A., (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621
  41. Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Panah, S.R.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237
  42. Lim, C.W., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  43. Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Modell., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
  44. Liu, H., Zhang, Q., Yang, X. and Ma, J. (2021), "Size-dependent vibration of laminated composite nanoplate with piezomagnetic face sheets", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01285-y
  45. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent post buckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428
  46. Mahesh, V. and Harursampath, D. (2020), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2020.1805059
  47. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
  48. Pham, Q.H., Nguyen, P.C., Tran, T.T. and Nguyen-Thoi, T. (2021), "Free vibration analysis of nanoplates with auxetic honeycomb core using a new third-order finite element method and nonlocal elasticity theory", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01531-3
  49. Qu, Y., Zhang, W., Peng, Z. and Meng, G. (2019), "Time-domain structural-acoustic analysis of composite plates subjected to moving dynamic loads", Compos. Struct., 208, 574-584. https://doi.org/10.1016/j.compstruct.2018.09.103
  50. Radwan, A.F. and Sobhy, M. (2020), "Transient instability analysis of viscoelastic sandwich CNTs-reinforced microplates exposed to 2D magnetic field and hygrothermal conditions", Compos. Struct., 245, 112349. https://doi.org/10.1016/j.compstruct.2020.112349
  51. Rai, A.K. and Gupta, S.S. (2021), "Nonlinear vibrations of a polar-orthotropic thin circular plate subjected to circularly moving point load", Compos. Struct., 256, 112953. https://doi.org/10.1016/j.compstruct.2020.112953
  52. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  53. Reddy, J.N. (1999), Theory and Analysis of Laminated Composite Plates, In Mechanics of Composite Materials and Structures, Springer, Dordrecht.
  54. Roudbari, M.A., Jorshari, T.D., Arani, A.G., Lu, C. and Rabczuk, T. (2020), "Transient responses of two mutually interacting single-walled boron nitride nanotubes induced by a moving nanoparticle", Eur. J. Mech. A Solids, 82, 103978. https://doi.org/10.1016/j.euromechsol.2020.103978
  55. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323
  56. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407
  57. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  58. Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Meth. Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025
  59. Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
  60. Simsek, M. and Aydin, M. (2017), "Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress theory", Compos. Struct., 160, 408-421. https://doi.org/10.1016/j.compstruct.2016.10.034
  61. Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062
  62. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201208. https://doi.org/10.1016/j.commatsci.2013.01.028
  63. Zhang, L.H., Lai, S.K., Wang, C. and Yang, J. (2021), "DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load", Compos. Struct., 255, 112865. https://doi.org/10.1016/j.compstruct.2020.112865
  64. Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct, 38(3), 293-304. http://dx.doi.org/10.12989/scs.2021.38.3.293
  65. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 14501460. https://doi.org/10.1016/j.compstruct.2011.11.010