• Title/Summary/Keyword: reinforcement configuration

Search Result 91, Processing Time 0.022 seconds

Experimental Study on Behavior of Confined Concrete According to Configuration of High-Strength Transverse Reinforcement (고강도 횡보강근의 배근형상에 따른 콘크리트의 거동에 관한 실험적 연구)

  • Kim, Young Seek;Kim, Dong Hwan;Kim, Sang Woo;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study estimates the performance of confined concrete according to the configuration of transverse steel bars. The main test variables were the yield strength of spiral reinforcement and configuration of transverse reinforcement. A total of 27 specimens with rectangular cross section were cast and tested under monotonic concentric compression. R-type specimens with rectangular spirals, C-type specimens with circular spirals and O-type specimens with combined shape of rectangular and octagon were designed in this study. From experimental results, it is concluded that the proposed configuration of transverse reinforcement can provided improved ductility to the confined concrete compared to rectangular spiral reinforcement.

Analysis of Seismic Performance Characteristics for School Buildings on the Bracing Configuration of Steel Frame System Reinforcement (철골 시스템보강의 가새 형태에 따른 학교건축물의 내진성능특성 분석)

  • Kim, Ho-Soo;Kim, So-Yeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.59-69
    • /
    • 2023
  • Recently, the occurrence frequency of earthquake has increased in Korea, and the interests for seismic reinforcement of existing school buildings have been raised. To this end, the seismic performance evaluations for school buildings that did not accomplish the seismic design are required. In particular, this study checks the eigenvalue analysis, pushover curves, maximum base shears, performance points and story drift ratios, and then analyzes the seismic performance characteristics according to bracing configuration of steel frame system reinforcement. Also, this study presents the practical field application methods through the comparison of analysis results for the seismic performance characteristics.

The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls

  • Majid Yazdandoust;Amirhossein Rasouli Jamnani;Mohsen Sabermahani
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2023
  • In the current study, a series of experimental and analytical evaluations were performed to introduce the horizontal pseudo static coefficient (kh) as a function of the wall configuration and the reinforcement type for analyzing reinforced soil walls. For this purpose, eight shaking table tests were performed on reduced-scale models of integrated and two-tiered walls reinforced by metal strip and geogrid to determine the distribution of dynamic lateral pressure in the walls. Then, the physical models were analyzed using Mononobe-Okabe method to estimate the value of kh required to establish the dynamic lateral pressures similar to those observed in shaking table tests. Based on the results, the horizontal pseudo static coefficient and the position of resultant lateral force (R) were introduced as a function of the horizontal peak ground acceleration (HPGA), the wall configuration, the reinforcement type as well as maximum wall displacement.

Confinement Effects of Reinforced Concrete Tied Columns (철근콘크리트 띠철근 기둥의 구속효과)

  • 왕성근;한범석;이희수;신성우;반병열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-34
    • /
    • 2001
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$120mm) were fabricated to simulate similarly an actual structural members size. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were studied in this research program.

  • PDF

Hysteric Behavior of Ultra-High Strength RC Columns (초고강도 RC 기둥의 이력특성에 관한 실험적 연구)

  • Kim Jong Keun;Ahn Jong Mun;Han Beom Seok;Shin Sung Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.31-34
    • /
    • 2005
  • An experimental investigation was conducted to examine the hysteric behavior of Ultra-High strength concrete columns for the requirement of ACI provision. Seven 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300\times300mm$ and the shear span ratio 4. The main variables are axial load ratio, configuration and volumetric ratio of transverse reinforcement. It has been found that the behavior of columns was affected by axial load ratio rather than the amount and the configuration of transverse reinforcement. Consequently, to secure the ductile behavior of 100MPa Ultra-High strength concrete columns, ACI provision for the requirement of transverse steel may considered axial level and the detail of transverse reinforcement.

  • PDF

Reinforcement Learning-Based Intelligent Decision-Making for Communication Parameters

  • Xie, Xia.;Dou, Zheng;Zhang, Yabin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2942-2960
    • /
    • 2022
  • The core of cognitive radio is the problem concerning intelligent decision-making for communication parameters, the objective of which is to find the most appropriate parameter configuration to optimize transmission performance. The current algorithms have the disadvantages of high dependence on prior knowledge, large amount of calculation, and high complexity. We propose a new decision-making model by making full use of the interactivity of reinforcement learning (RL) and applying the Q-learning algorithm. By simplifying the decision-making process, we avoid large-scale RL, reduce complexity and improve timeliness. The proposed model is able to find the optimal waveform parameter configuration for the communication system in complex channels without prior knowledge. Moreover, this model is more flexible than previous decision-making models. The simulation results demonstrate the effectiveness of our model. The model not only exhibits better decision-making performance in the AWGN channels than the traditional method, but also make reasonable decisions in the fading channels.

A Study of Implementation of Defense Configuration Management System based on PLM (PLM 기반의 국방 형상관리 정보체계 구축 사례연구)

  • Lim, Chae-O
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.305-313
    • /
    • 2008
  • A configuration management system was implemented by applying PLM to the defense field. The PLM system has recently been incorporated in a wide range of industries, and it has allowed for improvements in work productivity and expansion of related services by comprehensively managing and securing connection regarding configuration information in the defense field. Implementations include acquisition of configuration related information and reinforcement of BOM-oriented configuration management function, securing compatibility among 3D drawings of different agencies, improvement of drawing and document management functions, comprehensive systematic configuration management focused on product structure, strengthened configuration control functions, a management system according to the work flow and life cycle functions, an integrated configuration management system of 3D model CAD resources and an enhanced management system. This paper covers a case study reviewing the implementation of a PLM-based configuration management information system and its results, so that the information can be made available to other agencies and companies seeking to apply PLM in their organizations.

Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete (콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2016
  • This study examined the effect of transverse reinforcement and compressive stress on the shear friction performance at the shear interface intersecting two structural elements with various concrete types. From the prepared 12 push-off test specimens, various characteristics at the interface were measured as follows: crack propagation, shear load-relative slip relationship, initial shear cracking strength, ultimate shear friction strength, and shear transfer capacity of transverse reinforcement. The configuration of transverse reinforcement and compressive strength of concrete insignificantly influenced the amount of relative slippage at the shear friction plane. With the increase of applied compressive stress, the shear friction capacity of concrete tended to increase proportionally, whereas the shear transfer capacity of transverse reinforcement decreased, which was insignificantly affected by the configuration type of transverse reinforcement. The empirical equations of AASHTO-LRFD and Mattock underestimate the shear friction strength of concrete, whereas Hwang and Yang model provides better reliability, indicating that the mean and standard deviation of the ratios between measured shear strengths and predictions are 1.02 and 0.23, respectively.

Structural Behavior of Reinforced Concrete Continuous Deep Beams with Reinforcement around Opening (개구부 보강철근을 갖는 철근콘크리트 연속 깊은 보의 구조적 거동)

  • Yang, Keun-Hyeok;Hong, Seong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.378-381
    • /
    • 2006
  • Test results of four reinforced concrete two-span continuous deep beams are summarized. Main variables were the configuration of web opening reinforcement. Shear span-to-overall depth ratio and the size of the web opening were fixed by 1.0 and 0.5 a $\times$ 0.2 h, respectively. To control diagonal crack and enhance strength, it can be recommended that diagonal reinforcement crossing the crack plane joining between loading points and corner of openings should be provided.

  • PDF

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.