Acknowledgement
This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grand no. (GPIP: 375-135-2024). The Authors, therefore, acknowledge with thanks DSR for technical and financial support.
References
- Abdelrahman, A.A., Esen, I., Daikh, A.A. and Eltaher, M.A. (2021c), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2021.1999263
- Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021b), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M. A. and Assie, A.E. (2021a), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515
- Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1838298
- Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389
- Analooei, H.R., Azhari, M. and Salehipour, H. (2021), "Thermo-electro-mechanical vibration and buckling analysis of quadrilateral and triangular nanoplates with the nonlocal finite strip method", Mech. Based Des. Struct., 1-21. https://doi.org/10.1080/15397734.2021.1875331
- Arefi, M. and Soltan Arani, A.H. (2018), "Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments", Mech. Based Des. Struct., 46(6), 669-692. https://doi.org/10.1080/15397734.2018.1434002
- Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360021-01224-2
- Atmane, H.A., Tounsi, A. and Mechab, I. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
- Babaei, M., Asemi, K. and Kiarasi, F. (2021), "Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials", Thin Wall. Struct., 164, 107852. https://doi.org/10.1016/j.tws.2021.107852
- Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393
- Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002
- Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M., (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239. https://doi.org/10.12989/anr.2021.11.3.239
- Bouazza, M. and Zenkour, A.M. (2020), "Vibration of carbon nanotube-reinforced plates via refined n th-higher-order theory", Arch. Appl. Mech., 90(8), 1755-1769. https://doi.org/10.1007/s00419-020-01694-3
- Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M. A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643
- Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021a), "Buckling Analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250
- Daikh, A. A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021b), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8
- Daikh. A.A., Houari, M.S.A. and Eltaher, M.A. (2021c), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://doi.org/10.12989/sem.2021.80.1.063
- Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
- Ebrahimi, F., Dabbagh, A., Tornabene, F. and Civalek, O. (2019), "Hygro-thermal effects on wave dispersion responses of magnetostrictive sandwich nanoplates", Adv. Nano Res., 7(3), 157. https://doi.org/10.12989/anr.2019.7.3.157
- Eglin, M., Eriksson, M.A. and Carpick, R.W. (2006), "Microparticle manipulation using inertial forces", Appl. Phys. Lett., 88(9), 091913. https://doi.org/10.1063/1.2172401
- Eltaher, M.A., Abdelrahman, A.A. and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Eur. Phys. J. Plus, 136(7), 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. http://doi.org/10.1016/j.amc.2014.03.028
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021d), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9.
- Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5
- Esen, I., Daikh, A.A. and Eltaher, M.A. (2021c), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7
- Esen, I., Eltaher, M. A. and Abdelrahman, A.A. (2021e), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2021.1904255
- Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552
- Esmaeilzadeh, M., Esmaeil Golmakani, M., Kadkhodayan, M., Amoozgar, M. and Bodaghi, M. (2021), "Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates", Adv. Nano Res., 10(2), 151-163. https://doi.org/10.12989/anr.2021.10.2.151
- Esmaeilzadeh, M., Golmakani, M.E. and Sadeghian, M. (2020), "A nonlocal strain gradient model for nonlinear dynamic behavior of bi-directional functionally graded porous nanoplates on elastic foundations", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2020.1845965
- Farahmand, H. (2021), "A variational approach for analytical buckling solution of moderately thick microplate using strain gradient theory incorporating two-variable refined plate theory: A benchmark study", J. Brazil. Soc. Mech. Sci. Eng., 43(3), 1-11. https://doi.org/10.1007/s40430-020-02766-9
- Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193(17-20), 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
- Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2021), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct., 49(6), 811-840. https://doi.org/10.1080/15397734.2019.1701490
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/https://doi.org/10.1016/j.commatsci.2006.06.011
- Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2020), "Effects of surface energy and surface residual stresses on vibro-thermal analysis of chiral, zigzag, and armchair types of SWCNTs using refined beam theory", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2020.1754239
- Kachapi, S.H. (2020), "Surface/interface approach in pull-in instability and nonlinear vibration analysis of fluid-conveying piezoelectric nanosensor", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1725566
- Khadir, A.I., Daikh A.A, Eltaher, M.A., (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621
- Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Panah, S.R.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237
- Lim, C.W., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Modell., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
- Liu, H., Zhang, Q., Yang, X. and Ma, J. (2021), "Size-dependent vibration of laminated composite nanoplate with piezomagnetic face sheets", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01285-y
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent post buckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428
- Mahesh, V. and Harursampath, D. (2020), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2020.1805059
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Pham, Q.H., Nguyen, P.C., Tran, T.T. and Nguyen-Thoi, T. (2021), "Free vibration analysis of nanoplates with auxetic honeycomb core using a new third-order finite element method and nonlocal elasticity theory", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01531-3
- Qu, Y., Zhang, W., Peng, Z. and Meng, G. (2019), "Time-domain structural-acoustic analysis of composite plates subjected to moving dynamic loads", Compos. Struct., 208, 574-584. https://doi.org/10.1016/j.compstruct.2018.09.103
- Radwan, A.F. and Sobhy, M. (2020), "Transient instability analysis of viscoelastic sandwich CNTs-reinforced microplates exposed to 2D magnetic field and hygrothermal conditions", Compos. Struct., 245, 112349. https://doi.org/10.1016/j.compstruct.2020.112349
- Rai, A.K. and Gupta, S.S. (2021), "Nonlinear vibrations of a polar-orthotropic thin circular plate subjected to circularly moving point load", Compos. Struct., 256, 112953. https://doi.org/10.1016/j.compstruct.2020.112953
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. (1999), Theory and Analysis of Laminated Composite Plates, In Mechanics of Composite Materials and Structures, Springer, Dordrecht.
- Roudbari, M.A., Jorshari, T.D., Arani, A.G., Lu, C. and Rabczuk, T. (2020), "Transient responses of two mutually interacting single-walled boron nitride nanotubes induced by a moving nanoparticle", Eur. J. Mech. A Solids, 82, 103978. https://doi.org/10.1016/j.euromechsol.2020.103978
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Meth. Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025
- Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
- Simsek, M. and Aydin, M. (2017), "Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress theory", Compos. Struct., 160, 408-421. https://doi.org/10.1016/j.compstruct.2016.10.034
- Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201208. https://doi.org/10.1016/j.commatsci.2013.01.028
- Zhang, L.H., Lai, S.K., Wang, C. and Yang, J. (2021), "DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load", Compos. Struct., 255, 112865. https://doi.org/10.1016/j.compstruct.2020.112865
- Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct, 38(3), 293-304. http://dx.doi.org/10.12989/scs.2021.38.3.293
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 14501460. https://doi.org/10.1016/j.compstruct.2011.11.010