DOI QR코드

DOI QR Code

In vivo and in vitro sperm production: An overview of the challenges and advances in male fertility restoration

  • Zahra Bashiri (Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences) ;
  • Seyed Jamal Hosseini (Biomedical Engineering Department, Amirkabir University of Technology) ;
  • Maryam Salem (Department of Anatomy, School of Medicine, Tehran University of Medical Sciences) ;
  • Morteza Koruji (Department of Anatomy, School of Medicine, Iran University of Medical Sciences)
  • Received : 2023.10.03
  • Accepted : 2023.12.14
  • Published : 2024.09.30

Abstract

Male infertility can be caused by genetic anomalies, endocrine disorders, inflammation, and exposure to toxic chemicals or gonadotoxic treatments. Therefore, several recent studies have concentrated on the preservation and restoration of fertility to enhance the quality of life for affected individuals. It is currently recommended to biobank the tissue extracted from testicular biopsies to provide a later source of spermatogonial stem cells (SSCs). Another successful approach has been the in vitro production of haploid male germ cells. The capacity of SSCs to transform into sperm, as in testicular tissue transplantation, SSC therapy, and in vitro or ex vivo spermatogenesis, makes them ideal candidates for in vivo fertility restoration. The transplantation of SSCs or testicular tissue to regenerate spermatogenesis and create embryos has been achieved in nonhuman mammal species. Although the outcomes of human trials have yet to be released, this method may soon be approved for clinical use in humans. Furthermore, regenerative medicine techniques that develop tissue or cells on organic or synthetic scaffolds enriched with bioactive molecules have also gained traction. All of these methods are now in different stages of experimentation and clinical trials. However, thanks to rigorous studies on the safety and effectiveness of SSC-based reproductive treatments, some of these techniques may be clinically available in upcoming decades.

Keywords

References

  1. Van Saen D. In search of the most efficient fertility preservation strategy for prepubertal boys. Facts Views Vis Obgyn 2013;5:45-58. 
  2. Fayomi AP, Peters K, Sukhwani M, Valli-Pulaski H, Shetty G, Meistrich ML, et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science 2019;363:1314-9.  https://doi.org/10.1126/science.aav2914
  3. Tran KT, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies. Biol Reprod 2022;107:382-405.  https://doi.org/10.1093/biolre/ioac072
  4. Ozcan MC, Snegovskikh V, Adamson GD. Oocyte and embryo cryopreservation before gonadotoxic treatments: principles of safe ovarian stimulation, a systematic review. Womens Health (Lond) 2022;18:17455065221074886. 
  5. Yokonishi T, Ogawa T. Cryopreservation of testis tissues and in vitro spermatogenesis. Reprod Med Biol 2016;15:21-8.  https://doi.org/10.1007/s12522-015-0218-4
  6. Ntemou E, Alexandri C, Lybaert P, Goossens E, Demeestere I. Oncofertility: pharmacological protection and immature testicular tissue (ITT)-based strategies for prepubertal and adolescent male cancer patients. Int J Mol Sci 2019;20:5223. 
  7. Bhaskar R, Gupta MK, Han SS. Tissue engineering approaches for the in vitro production of spermatids to treat male infertility: a review. Eur Polym J 2022;174:111318. 
  8. Delgouffe E, Braye A, Goossens E. Testicular tissue banking for fertility preservation in young boys: which patients should be included? Front Endocrinol (Lausanne) 2022;13:854186. 
  9. Smart E, Lopes F, Rice S, Nagy B, Anderson RA, Mitchell RT, et al. Chemotherapy drugs cyclophosphamide, cisplatin and doxorubicin induce germ cell loss in an in vitro model of the prepubertal testis. Sci Rep 2018;8:1773. 
  10. Pelzman DL, Orwig KE, Hwang K. Progress in translational reproductive science: testicular tissue transplantation and in vitro spermatogenesis. Fertil Steril 2020;113:500-9.  https://doi.org/10.1016/j.fertnstert.2020.01.038
  11. Shinohara T, Inoue K, Ogonuki N, Kanatsu-Shinohara M, Miki H, Nakata K, et al. Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. Hum Reprod 2002;17:3039-45.  https://doi.org/10.1093/humrep/17.12.3039
  12. Honaramooz A, Snedaker A, Boiani M, Scholer H, Dobrinski I, Schlatt S. Sperm from neonatal mammalian testes grafted in mice. Nature 2002;418:778-81.  https://doi.org/10.1038/nature00918
  13. Shinohara T, Kato M, Takehashi M, Lee J, Chuma S, Nakatsuji N, et al. Rats produced by interspecies spermatogonial transplantation in mice and in vitro microinsemination. Proc Natl Acad Sci USA 2006;103:13624-8.  https://doi.org/10.1073/pnas.0604205103
  14. Nakai M, Kaneko H, Somfai T, Maedomari N, Ozawa M, Noguchi J, et al. Production of viable piglets for the first time using sperm derived from ectopic testicular xenografts. Reproduction 2010;139:331-5.  https://doi.org/10.1530/REP-09-0509
  15. Kaneko H, Kikuchi K, Nakai M, Somfai T, Noguchi J, Tanihara F, et al. Generation of live piglets for the first time using sperm retrieved from immature testicular tissue cryopreserved and grafted into nude mice. PLoS One 2013;8:e70989. 
  16. Schlatt S, Honaramooz A, Boiani M, Scholer HR, Dobrinski I. Progeny from sperm obtained after ectopic grafting of neonatal mouse testes. Biol Reprod 2003;68:2331-5.  https://doi.org/10.1095/biolreprod.102.014894
  17. Liu Z, Nie YH, Zhang CC, Cai YJ, Wang Y, Lu HP, et al. Generation of macaques with sperm derived from juvenile monkey testicular xenografts. Cell Res 2016;26:139-42.  https://doi.org/10.1038/cr.2015.112
  18. Wyns C, Van Langendonckt A, Wese FX, Donnez J, Curaba M. Longterm spermatogonial survival in cryopreserved and xenografted immature human testicular tissue. Hum Reprod 2008;23:2402-14.  https://doi.org/10.1093/humrep/den272
  19. Hou M, Andersson M, Zheng C, Sundblad A, Soder O, Jahnukainen K. Immunomagnetic separation of normal rat testicular cells from Roser's T-cell leukaemia cells is ineffective. Int J Androl 2009;32:66-73.  https://doi.org/10.1111/j.1365-2605.2007.00819.x
  20. Goossens E, Van Saen D, Tournaye H. Spermatogonial stem cell preservation and transplantation: from research to clinic. Hum Reprod 2013;28:897-907.  https://doi.org/10.1093/humrep/det039
  21. Poels J, Abou-Ghannam G, Herman S, Van Langendonckt A, Wese FX, Wyns C. In search of better spermatogonial preservation by supplementation of cryopreserved human immature testicular tissue xenografts with N-acetylcysteine and testosterone. Front Surg 2014;1:47. 
  22. Vermeulen M, Poels J, de Michele F, des Rieux A, Wyns C. Restoring fertility with cryopreserved prepubertal testicular tissue: perspectives with hydrogel encapsulation, nanotechnology, and bioengineered scaffolds. Ann Biomed Eng 2017;45:1770-81.  https://doi.org/10.1007/s10439-017-1789-5
  23. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 1994;91:11298-302.  https://doi.org/10.1073/pnas.91.24.11298
  24. Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, et al. Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 2003;69:1260-4.  https://doi.org/10.1095/biolreprod.103.018788
  25. Giudice MG, de Michele F, Poels J, Vermeulen M, Wyns C. Update on fertility restoration from prepubertal spermatogonial stem cells: how far are we from clinical practice? Stem Cell Res 2017;21:171-7.  https://doi.org/10.1016/j.scr.2017.01.009
  26. Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 2012;11:715-26.  https://doi.org/10.1016/j.stem.2012.07.017
  27. Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. Successful human spermatogonial stem cells homing in recipient mouse testis after in vitro transplantation and organ culture. Cell J 2019;20:513-20. 
  28. Mirzapour T, Movahedin M, Koruji M, Nowroozi MR. Xenotransplantation assessment: morphometric study of human spermatogonial stem cells in recipient mouse testes. Andrologia 2015;47:626-33.  https://doi.org/10.1111/and.12310
  29. Hermann BP, Sukhwani M, Salati J, Sheng Y, Chu T, Orwig KE. Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum Reprod 2011;26:3222-31.  https://doi.org/10.1093/humrep/der343
  30. Hou M, Andersson M, Zheng C, Sundblad A, Soder O, Jahnukainen K. Decontamination of leukemic cells and enrichment of germ cells from testicular samples from rats with Roser's T-cell leukemia by flow cytometric sorting. Reproduction 2007;134:767-79.  https://doi.org/10.1530/REP-07-0240
  31. Eslahi N, Shakeri-Zadeh A, Ashtari K, Pirhajati-Mahabadi V, Tohidi Moghadam T, Shabani R, et al. In vitro cytotoxicity of folate-silica-gold nanorods on mouse acute lymphoblastic leukemia and spermatogonial cells. Cell J 2019;21:14-26. 
  32. Shabani R, Ashjari M, Ashtari K, Izadyar F, Behnam B, Khoei S, et al. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro. Int J Nanomedicine 2018;13:2943-54.  https://doi.org/10.2147/IJN.S155052
  33. Shams A, Shabani R, Asgari H, Karimi M, Najafi M, Asghari-Jafarabadi M, et al. In vitro elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143- and 206-loaded folic acid-conjugated PLGA nanoparticles. Nanomedicine (Lond) 2022;17:531-45.  https://doi.org/10.2217/nnm-2021-0210
  34. Ashtari B, Shams A, Esmaeilzadeh N, Tanbakooei S, Koruji M, Moghadam MJ, et al. Separating mouse malignant cell line (EL4) from neonate spermatogonial stem cells utilizing microfluidic device in vitro. Stem Cell Res Ther 2020;11:191. 
  35. Picton HM, Wyns C, Anderson RA, Goossens E, Jahnukainen K, Kliesch S, et al. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod 2015;30:2463-75.  https://doi.org/10.1093/humrep/dev190
  36. Samplaski MK, Deault-Bonin M, Lo KC. Genetic and epigenetic changes after spermatogonial stem cell culture and transplantation. EJIFCC 2014;25:27-41. 
  37. Singh D, Paduch DA, Schlegel PN, Orwig KE, Mielnik A, Bolyakov A, et al. The production of glial cell line-derived neurotrophic factor by human Sertoli cells is substantially reduced in Sertoli cell-only testes. Hum Reprod 2017;32:1108-17.  https://doi.org/10.1093/humrep/dex061
  38. Gassei K, Orwig KE. Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 2016;105:256-66.  https://doi.org/10.1016/j.fertnstert.2015.12.020
  39. Ferguson W. Sperm stem cells restore male fertility. New Sci 2012;216:10. 
  40. Martin LA, Seandel M. Propagation of adult SSCs: from mouse to human. Biomed Res Int 2013;2013:384734. 
  41. Ishikura Y, Ohta H, Sato T, Murase Y, Yabuta Y, Kojima Y, et al. In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell 2021;28:2167-79.  https://doi.org/10.1016/j.stem.2021.08.005
  42. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011;146:519-32.  https://doi.org/10.1016/j.cell.2011.06.052
  43. Easley CA 4th, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2012;2:440-6.  https://doi.org/10.1016/j.celrep.2012.07.015
  44. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 2015;17:178-94.  https://doi.org/10.1016/j.stem.2015.06.014
  45. Cyranoski D. Mouse eggs made from skin cells in a dish. Nature 2016;538:301. 
  46. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015;160:253-68.  https://doi.org/10.1016/j.cell.2014.12.013
  47. Dong G, Shang Z, Liu L, Liu C, Ge Y, Wang Q, et al. Retinoic acid combined with spermatogonial stem cell conditions facilitate the generation of mouse germ-like cells. Biosci Rep 2017;37:BSR20170637. 
  48. Khampang S, Cho IK, Punyawai K, Gill B, Langmo JN, Nath S, et al. Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells. F S Sci 2021;2:365-75.  https://doi.org/10.1016/j.xfss.2021.09.001
  49. Shlush E, Maghen L, Swanson S, Kenigsberg S, Moskovtsev S, Barretto T, et al. In vitro generation of Sertoli-like and haploid spermatid-like cells from human umbilical cord perivascular cells. Stem Cell Res Ther 2017;8:37. 
  50. Smith JF, Yango P, Altman E, Choudhry S, Poelzl A, Zamah AM, et al. Testicular niche required for human spermatogonial stem cell expansion. Stem Cells Transl Med 2014;3:1043-54.  https://doi.org/10.5966/sctm.2014-0045
  51. Maghen L, Shlush E, Gat I, Filice M, Barretto T, Jarvi K, et al. Human umbilical perivascular cells: a novel source of MSCs to support testicular niche regeneration. Reproduction 2016;153:85-95.  https://doi.org/10.1530/REP-16-0220
  52. Guo R, Ye X, Yang J, Zhou Z, Tian C, Wang H, et al. Feeders facilitate telomere maintenance and chromosomal stability of embryonic stem cells. Nat Commun 2018;9:2620. 
  53. Guadix JA, Zugaza JL, Galvez-Martin P. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clin (Barc) 2017;148:408-14.  https://doi.org/10.1016/j.medcli.2016.11.033
  54. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 2017;6:2173-85.  https://doi.org/10.1002/sctm.17-0129
  55. Fazeli Z, Abedindo A, Omrani MD, Ghaderian SM. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: a systematic review. Stem Cell Rev Rep 2018;14:1-12.  https://doi.org/10.1007/s12015-017-9765-x
  56. Hassan AI, Alam SS. Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem Cell Res Ther 2014;5:131. 
  57. Hsiao CH, Ji AT, Chang CC, Cheng CJ, Lee LM, Ho JH. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015;6:113. 
  58. Zhang ZY, Xing XY, Ju GQ, Zhong L, Sun J. Mesenchymal stem cells from human umbilical cord ameliorate testicular dysfunction in a male rat hypogonadism model. Asian J Androl 2017;19:543-7.  https://doi.org/10.4103/1008-682X.186186
  59. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006;86:654-63.  https://doi.org/10.1038/labinvest.3700429
  60. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011;8:106-18.  https://doi.org/10.1016/j.stem.2010.12.003
  61. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, et al. Copy number variation and selection during reprogramming to pluripotency. Nature 2011;471:58-62.  https://doi.org/10.1038/nature09871
  62. Takashima S, Shinohara T. Culture and transplantation of spermatogonial stem cells. Stem Cell Res 2018;29:46-55.  https://doi.org/10.1016/j.scr.2018.03.006
  63. Martinovitch PN. Development in vitro of the mammalian gonad. Nature 1937;139:413. 
  64. Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 2011;471:504-7.  https://doi.org/10.1038/nature09850
  65. Tesarik J, Bahceci M, Ozcan C, Greco E, Mendoza C. Restoration of fertility by in-vitro spermatogenesis. Lancet 1999;353:555-6.  https://doi.org/10.1016/S0140-6736(98)04784-9
  66. Sato T, Yokonishi T, Komeya M, Katagiri K, Kubota Y, Matoba S, et al. Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proc Natl Acad Sci U S A 2012;109:16934-8.  https://doi.org/10.1073/pnas.1211845109
  67. Steinberger E, Steinberger A, Perloff WH. Initiation of spermatogenesis in vitro. Endocrinology 1964;74:788-92.  https://doi.org/10.1210/endo-74-5-788
  68. Boitani C, Politi MG, Menna T. Spermatogonial cell proliferation in organ culture of immature rat testis. Biol Reprod 1993;48:761-7.  https://doi.org/10.1095/biolreprod48.4.761
  69. Kanbar M, de Michele F, Poels J, Van Loo S, Giudice MG, Gilet T, et al. Microfluidic and static organotypic culture systems to support ex vivo spermatogenesis from prepubertal porcine testicular tissue: a comparative study. Front Physiol 2022;13:884122. 
  70. AbuMadighem A, Shuchat S, Lunenfeld E, Yossifon G, Huleihel M. Testis on a chip-a microfluidic three-dimensional culture system for the development of spermatogenesis in-vitro. Biofabrication 2022;14:035004. 
  71. Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K, et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep 2016;6:21472. 
  72. Amirkhani Z, Movahedin M, Baheiraei N, Ghiaseddin A. Mini bioreactor can support in vitro spermatogenesis of mouse testicular tissue. Cell J 2022;24:277-84. 
  73. Yuan Y, Li L, Cheng Q, Diao F, Zeng Q, Yang X, et al. In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Res 2020;30:244-55.  https://doi.org/10.1038/s41422-020-0283-z
  74. von Kopylow K, Schulze W, Salzbrunn A, Schaks M, Schafer E, Roth B, et al. Dynamics, ultrastructure and gene expression of human in vitro organized testis cells from testicular sperm extraction biopsies. Mol Hum Reprod 2018;24:123-34.  https://doi.org/10.1093/molehr/gax070
  75. Huleihel M, Nourashrafeddin S, Plant TM. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl 2015;17:972-80.  https://doi.org/10.4103/1008-682X.154994
  76. Voigt AL, Thiageswaran S, de Lima E Martins Lara N, Dobrinski I. Metabolic requirements for spermatogonial stem cell establishment and maintenance in vivo and in vitro. Int J Mol Sci 2021;22:1998. 
  77. Galdon G, Atala A, Sadri-Ardekani H. In vitro spermatogenesis: how far from clinical application? Curr Urol Rep 2016;17:49. 
  78. Wu X, Su J, Wei J, Jiang N, Ge X. Recent advances in three-dimensional stem cell culture systems and applications. Stem Cells Int 2021;2021:9477332. 
  79. Rafeeqi T, Kaul G. Carbon nanotubes as a scaffold for spermatogonial cell maintenance. J Biomed Nanotechnol 2010;6:710-7.  https://doi.org/10.1166/jbn.2010.1167
  80. Pan F, Chi L, Schlatt S. Effects of nanostructures and mouse embryonic stem cells on in vitro morphogenesis of rat testicular cords. PLoS One 2013;8:e60054. 
  81. Talebi A, Sadighi Gilani MA, Koruji M, Ai J, Rezaie MJ, Navid S, et al. Colonization of mouse spermatogonial cells in modified soft agar culture system utilizing nanofibrous scaffold: a new approach. Galen Med J 2019;8:e1319. 
  82. Eslahi N, Hadjighassem MR, Joghataei MT, Mirzapour T, Bakhtiyari M, Shakeri M, et al. The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture. Int J Nanomedicine 2013;8:4563-76.  https://doi.org/10.2147/IJN.S45535
  83. Lee JH, Oh JH, Lee JH, Kim MR, Min CK. Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based microporous biodegradable scaffolds. J Tissue Eng Regen Med 2011;5:130-7.  https://doi.org/10.1002/term.297
  84. Ziloochi Kashani M, Bagher Z, Asgari HR, Najafi M, Koruji M, Mehraein F. Differentiation of neonate mouse spermatogonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold. Syst Biol Reprod Med 2020;66:202-15.  https://doi.org/10.1080/19396368.2020.1725927
  85. Shakeri M, Kohram H, Shahverdi A, Shahneh AZ, Tavakolifar F, Pirouz M, et al. Behavior of mouse spermatogonial stem-like cells on an electrospun nanofibrillar matrix. J Assist Reprod Genet 2013;30:325-32.  https://doi.org/10.1007/s10815-012-9916-6
  86. Lee DR, Kaproth MT, Parks JE. In vitro production of haploid germ cells from fresh or frozen-thawed testicular cells of neonatal bulls. Biol Reprod 2001;65:873-8.  https://doi.org/10.1095/biolreprod65.3.873
  87. Lee DR, Kim KS, Yang YH, Oh HS, Lee SH, Chung TG, et al. Isolation of male germ stem cell-like cells from testicular tissue of non-obstructive azoospermic patients and differentiation into haploid male germ cells in vitro. Hum Reprod 2006;21:471-6.  https://doi.org/10.1093/humrep/dei319
  88. Vardiani M, Gholipourmalekabadi M, Ghaffari Novin M, Koruji M, Ghasemi Hamidabadi H, Salimi M, et al. Three-dimensional electrospun gelatin scaffold coseeded with embryonic stem cells and Sertoli cells: a promising substrate for in vitro coculture system. J Cell Biochem 2019;120:12508-18.  https://doi.org/10.1002/jcb.28517
  89. Stukenborg JB, Schlatt S, Simoni M, Yeung CH, Elhija MA, Luetjens CM, et al. New horizons for in vitro spermatogenesis?: an update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod 2009;15:521-9.  https://doi.org/10.1093/molehr/gap052
  90. Lee JH, Kim HJ, Kim H, Lee SJ, Gye MC. In vitro spermatogenesis by three-dimensional culture of rat testicular cells in collagen gel matrix. Biomaterials 2006;27:2845-53.  https://doi.org/10.1016/j.biomaterials.2005.12.028
  91. Zhang J, Hatakeyama J, Eto K, Abe S. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen Comp Endocrinol 2014;205:121-32.  https://doi.org/10.1016/j.ygcen.2014.03.030
  92. Bashiri Z, Moghaddaszadeh A, Falak R, Khadivi F, Afzali A, Abbasi M, et al. Generation of haploid spermatids on silk fibroin-alginate-laminin-based porous 3D scaffolds. Macromol Biosci 2023;23:e2200574. 
  93. Narimanpour Z, Bojnordi MN, Hamidabadi HG. Spermatogenic differentiation of spermatogonial stem cells on three-dimensional silk nanofiber scaffold. Middle East Fertil Soc J 2022;27:15. 
  94. Perrard MH, Sereni N, Schluth-Bolard C, Blondet A, d'Estaing SG, Plotton I, et al. Complete human and rat ex vivo spermatogenesis from fresh or frozen testicular tissue. Biol Reprod 2016;95:89. 
  95. Sun M, Yuan Q, Niu M, Wang H, Wen L, Yao C, et al. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ 2018;25:749-66.  https://doi.org/10.1038/s41418-017-0015-1
  96. Zhang X, Wang L, Zhang X, Ren L, Shi W, Tian Y, et al. The use of knockout serum replacement (KSR) in three dimensional rat testicular cells co-culture model: an improved male reproductive toxicity testing system. Food Chem Toxicol 2017;106(Pt A): 487-95.  https://doi.org/10.1016/j.fct.2017.05.001
  97. Legendre A, Froment P, Desmots S, Lecomte A, Habert R, Lemazurier E. An engineered 3D blood-testis barrier model for the assessment of reproductive toxicity potential. Biomaterials 2010;31:4492-505.  https://doi.org/10.1016/j.biomaterials.2010.02.029
  98. Stukenborg JB, Wistuba J, Luetjens CM, Elhija MA, Huleihel M, Lunenfeld E, et al. Coculture of spermatogonia with somatic cells in a novel three-dimensional soft-agar-culture-system. J Androl 2008;29:312-29.  https://doi.org/10.2164/jandrol.107.002857
  99. Abu Elhija M, Lunenfeld E, Schlatt S, Huleihel M. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J Androl 2012;14:285-93.  https://doi.org/10.1038/aja.2011.112
  100. Jabari A, Gholami K, Khadivi F, Koruji M, Amidi F, Gilani MA, et al. In vitro complete differentiation of human spermatogonial stem cells to morphologic spermatozoa using a hybrid hydrogel of agarose and laminin. Int J Biol Macromol 2023;235:123801. 
  101. Bashiri Z, Gholipourmalekabadi M, Khadivi F, Salem M, Afzali A, Cham TC, et al. In vitro spermatogenesis in artificial testis: current knowledge and clinical implications for male infertility. Cell Tissue Res 2023;394:393-421.  https://doi.org/10.1007/s00441-023-03824-z
  102. Rezaei Topraggaleh T, Rezazadeh Valojerdi M, Montazeri L, Baharvand H. A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomater Sci 2019;7:1422-36.  https://doi.org/10.1039/C8BM01001C
  103. Cham TC, Chen X, Honaramooz A. Current progress, challenges, and future prospects of testis organoids†. Biol Reprod 2021;104:942-61.  https://doi.org/10.1093/biolre/ioab014
  104. Baert Y, Dvorakova-Hortova K, Margaryan H, Goossens E. Mouse in vitro spermatogenesis on alginate-based 3D bioprinted scaffolds. Biofabrication 2019;11:035011. 
  105. Robinson M, Bedford E, Witherspoon L, Willerth SM, Flannigan R. Using clinically derived human tissue to 3-dimensionally bioprint personalized testicular tubules for in vitro culturing: first report. F S Sci 2022;3:130-9.  https://doi.org/10.1016/j.xfss.2022.02.004
  106. Bashiri Z, Zahiri M, Allahyari H, Esmaeilzade B. Proliferation of human spermatogonial stem cells on optimized PCL/gelatin nanofibrous scaffolds. Andrologia 2022;54:e14380. 
  107. Bashiri Z, Amiri I, Gholipourmalekabadi M, Falak R, Asgari H, Maki CB, et al. Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomater Sci 2021;9:3465-84.  https://doi.org/10.1039/D0BM02209H
  108. Alves-Lopes JP, Stukenborg JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update 2018;24:176-91.  https://doi.org/10.1093/humupd/dmx036
  109. Bredenoord AL, Clevers H, Knoblich JA. Human tissues in a dish: the research and ethical implications of organoid technology. Science 2017;355:eaaf9414. 
  110. Yokonishi T, Sato T, Katagiri K, Komeya M, Kubota Y, Ogawa T. In vitro reconstruction of mouse seminiferous tubules supporting germ cell differentiation. Biol Reprod 2013;89:15. 
  111. Baert Y, De Kock J, Alves-Lopes JP, Soder O, Stukenborg JB, Goossens E. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Reports 2017;8:30-8.  https://doi.org/10.1016/j.stemcr.2016.11.012
  112. Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol Reprod 2017;96:720-32.  https://doi.org/10.1095/biolreprod.116.143446
  113. Sakib S, Uchida A, Valenzuela-Leon P, Yu Y, Valli-Pulaski H, Orwig K, et al. Formation of organotypic testicular organoids in microwell culture†. Biol Reprod 2019;100:1648-60.  https://doi.org/10.1093/biolre/ioz053
  114. Edmonds ME, Woodruff TK. Testicular organoid formation is a property of immature somatic cells, which self-assemble and exhibit long-term hormone-responsive endocrine function. Biofabrication 2020;12:045002. 
  115. Cham TC, Ibtisham F, Fayaz MA, Honaramooz A. Generation of a highly biomimetic organoid, including vasculature, resembling the native immature testis tissue. Cells 2021;10:1696. 
  116. Vermeulen M, Del Vento F, Kanbar M, Pyr Dit Ruys S, Vertommen D, Poels J, et al. Generation of organized porcine testicular organoids in solubilized hydrogels from decellularized extracellular matrix. Int J Mol Sci 2019;20:5476. 
  117. Yang Y, Lin Q, Zhou C, Li Q, Li Z, Cao Z, et al. A testis-derived hydrogel as an efficient feeder-free culture platform to promote mouse spermatogonial stem cell proliferation and differentiation. Front Cell Dev Biol 2020;8:250. 
  118. Salek F, Baharara J, Shahrokhabadi KN, Amini E. The guardians of germ cells: sertoli-derived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells. Theriogenology 2021;173:112-22.  https://doi.org/10.1016/j.theriogenology.2021.08.001
  119. Gao H, Cao H, Li Z, Li L, Guo Y, Chen Y, et al. Exosome-derived small RNAs in mouse Sertoli cells inhibit spermatogonial apoptosis. Theriogenology 2023;200:155-67.  https://doi.org/10.1016/j.theriogenology.2023.02.011
  120. Li Q, Li H, Liang J, Mei J, Cao Z, Zhang L, et al. Sertoli cell-derived exosomal microRNA-486-5p regulates differentiation of spermatogonial stem cell through PTEN in mice. J Cell Mol Med 2021;25:3950-62.  https://doi.org/10.1111/jcmm.16347
  121. Rahbar M, Asadpour R, Azami M, Mazaheri Z, Hamali H. Improving the process of spermatogenesis in azoospermic mice using spermatogonial stem cells co-cultured with epididymosomes in three-dimensional culture system. Life Sci 2022;310:121057. 
  122. Yang L, Jiang Z, Zhou L, Zhao K, Ma X, Cheng G. Hydrophilic cell-derived extracellular matrix as a niche to promote adhesion and differentiation of neural progenitor cells. RSC Adv 2017;7:45587-94.  https://doi.org/10.1039/C7RA08273H
  123. Silva JC, Carvalho MS, Udangawa RN, Moura CS, Cabral JM, da Silva CL, et al. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. J Biomed Mater Res B Appl Biomater 2020;108:2153-66.  https://doi.org/10.1002/jbm.b.34554
  124. Zhang W, Yang J, Zhu Y, Sun X, Guo W, Liu X, et al. Extracellular matrix derived by human umbilical cord-deposited mesenchymal stem cells accelerates chondrocyte proliferation and differentiation potential in vitro. Cell Tissue Bank 2019;20:351-65.  https://doi.org/10.1007/s10561-019-09774-7
  125. Kanninen LK, Porola P, Niklander J, Malinen MM, Corlu A, Guguen-Guillouzo C, et al. Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix. Exp Cell Res 2016;341:207-17. https://doi.org/10.1016/j.yexcr.2016.02.006