DOI QR코드

DOI QR Code

Novel approach to assessing the primary stability of dental implants under functional cyclic loading in vitro: a biomechanical pilot study using synthetic bone

  • Jean-Pierre Fischer (ZESBO – Center for Research on Musculoskeletal Systems, Leipzig University) ;
  • Stefan Schleifenbaum (ZESBO – Center for Research on Musculoskeletal Systems, Leipzig University) ;
  • Felicitas Gelberg (Institute of Anatomy, Leipzig University) ;
  • Thomas Barth (DENTALE – Dental Competence Center Leipzig GmbH) ;
  • Toni Wendler (ZESBO – Center for Research on Musculoskeletal Systems, Leipzig University) ;
  • Sabine Loffler (Institute of Anatomy, Leipzig University)
  • Received : 2023.03.27
  • Accepted : 2023.07.31
  • Published : 2024.06.30

Abstract

Purpose: This pilot study was conducted to develop a novel test setup for the in vitro assessment of the primary stability of dental implants. This was achieved by characterising their long-term behaviour based on the continuous recording of micromotions resulting from dynamic and cyclic loading. Methods: Twenty screw implants, each 11 mm in length and either 3.8 mm (for premolars) or 4.3 mm (for molars) in diameter, were inserted into the posterior region of 5 synthetic mandibular models. Physiological masticatory loads were simulated by superimposing cyclic buccal-lingual movement of the mandible with a vertically applied masticatory force. Using an optical 3-dimensional (3D) measuring system, the micromotions of the dental crowns relative to the alveolar bone resulting from alternating off-centre loads were concurrently determined over 10,000 test cycles. Results: The buccal-lingual deflections of the dental crowns significantly increased from cycle 10 to cycle 10,000 (P<0.05). The deflections increased sharply during the first 500 cycles before approaching a plateau. Premolars exhibited greater maximum deflections than molars. The bone regions located mesially and distally adjacent to the loaded implants demonstrated deflections that occurred synchronously and in the same direction as the applied loads. The overall spatial movement of the implants over time followed an hourglass-shaped loosening pattern with a characteristic pivot point 5.5±1.1 mm from the apical end. Conclusions: In synthetic mandibular models, the cyclic reciprocal loading of dental implants with an average masticatory force produces significant loosening. The evasive movements observed in the alveolar bone suggest that its anatomy and yielding could significantly influence the force distribution and, consequently, the mechanical behaviour of dental implants. The 3D visualisation of the overall implant movement under functional cyclic loading complements known methods and can contribute to the development of implant designs and surgical techniques by providing a more profound understanding of dynamic bone-implant interactions.

Keywords

Acknowledgement

The authors would like to thank the Oral Reconstruction Foundation for providing the dental implants examined in this study.

References

  1. Albrektsson T, Brunski J, Wennerberg A. 'A requiem for the periodontal ligament' revisited. Int J Prosthodont 2009;22:120-2.
  2. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100.
  3. Monje A, Ravida A, Wang HL, Helms JA, Brunski JB. Relationship between primary/mechanical and secondary/biological implant stability. Int J Oral Maxillofac Implants 2019;34:s7-23. https://doi.org/10.11607/jomi.19suppl.g1
  4. Roberts WE. Bone dynamics of osseointegration, ankylosis, and tooth movement. J Indiana Dent Assoc 1999;78:24-32.
  5. Raes F, Eccellente T, Lenzi C, Ortolani M, Luongo G, Mangano C, et al. Immediate functional loading of single implants: a multicenter study with 4 years of follow-up. J Dent Res Dent Clin Dent Prospect 2018;12:26-37. https://doi.org/10.15171/joddd.2018.005
  6. Douglas de Oliveira DW, Lages FS, Lanza LA, Gomes AM, Queiroz TP, Costa FO. Dental implants with immediate loading using insertion torque of 30 Ncm: a systematic review. Implant Dent 2016;25:675-83. https://doi.org/10.1097/ID.0000000000000444
  7. Paepoemsin T, Reichart PA, Chaijareenont P, Strietzel FP, Khongkhunthian P. Removal torque evaluation of three different abutment screws for single implant restorations after mechanical cyclic loading. Oral Implantol (Rome) 2016.9:213-21.
  8. Tsuruta K, Ayukawa Y, Matsuzaki T, Kihara M, Koyano K. The influence of implant-abutment connection on the screw loosening and microleakage. Int J Implant Dent 2018;4:11-7. https://doi.org/10.1186/s40729-018-0121-y
  9. Lee SY, Kim SJ, An HW, Kim HS, Ha DG, Ryo KH, et al. The effect of the thread depth on the mechanical properties of the dental implant. J Adv Prosthodont 2015;7:115-21.  https://doi.org/10.4047/jap.2015.7.2.115
  10. Sennerby L, Pagliani L, Petersson A, Verrocchi D, Volpe S, Andersson P. Two different implant designs and impact of related drilling protocols on primary stability in different bone densities: an in vitro comparison study. Int J Oral Maxillofac Implants 2015;30:564-8. https://doi.org/10.11607/jomi.3903
  11. Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G. Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res 2009;20:467-71. https://doi.org/10.1111/j.1600-0501.2008.01679.x
  12. Freitas AC Jr, Bonfante EA, Giro G, Janal MN, Coelho PG. The effect of implant design on insertion torque and immediate micromotion. Clin Oral Implants Res 2012;23:113-8. https://doi.org/10.1111/j.1600-0501.2010.02142.x
  13. Sugiura T, Yamamoto K, Horita S, Murakami K, Tsutsumi S, Kirita T. Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis. J Periodontal Implant Sci 2017;47:251-62. https://doi.org/10.5051/jpis.2017.47.4.251
  14. Mericske-Stern R. Three-dimensional force measurements with mandibular overdentures connected to implants by ball-shaped retentive anchors. A clinical study. Int J Oral Maxillofac Implants 1998.13:36-43.
  15. Fuentes R, Arias A, Lezcano MF, Saravia D, Kuramochi G, Dias FJ. Systematic standardized and individualized assessment of masticatory cycles using electromagnetic 3D articulography and computer scripts. BioMed Res Int 2017;2017:7134389.
  16. Gratton DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent 2001;85:47-52. https://doi.org/10.1067/mpr.2001.112796
  17. Steinebrunner L, Wolfart S, Ludwig K, Kern M. Implant-abutment interface design affects fatigue and fracture strength of implants. Clin Oral Implants Res 2008;19:1276-84. https://doi.org/10.1111/j.1600-0501.2008.01581.x
  18. Khraisat A, Hashimoto A, Nomura S, Miyakawa O. Effect of lateral cyclic loading on abutment screw loosening of an external hexagon implant system. J Prosthet Dent 2004;91:326-34. https://doi.org/10.1016/j.prosdent.2004.01.001
  19. Winkler S, Ring K, Ring JD, Boberick KG. Implant screw mechanics and the settling effect: overview. J Oral Implantol 2003;29:242-5. https://doi.org/10.1563/1548-1336(2003)029<0242:ISMATS>2.3.CO;2
  20. Harder S, Dimaczek B, Acil Y, Terheyden H, Freitag-Wolf S, Kern M. Molecular leakage at implant-abutment connection--in vitro investigation of tightness of internal conical implant-abutment connections against endotoxin penetration. Clin Oral Investig 2010;14:427-32. https://doi.org/10.1007/s00784-009-0317-x
  21. Haiat G, Wang HL, Brunski J. Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient's mouth. Annu Rev Biomed Eng 2014;16:187-213. https://doi.org/10.1146/annurev-bioeng-071813-104854
  22. Gehrke SA, Perez-Diaz L, Dedavid BA. Quasi-static strength and fractography analysis of two dental implants manufactured by direct metal laser sintering. Clin Implant Dent Relat Res 2018;20:368-74. https://doi.org/10.1111/cid.12590
  23. Bacchi A, Regalin A, Bhering CL, Alessandretti R, Spazzin AO. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating. J Adv Prosthodont 2015;7:375-9. https://doi.org/10.4047/jap.2015.7.5.375
  24. Markarian RA, Galles DP, Gomes Franca FM. Scanning electron microscopy analysis of the adaptation of single-unit screw-retained computer-aided design/computer-aided manufacture abutments after mechanical cycling. Int J Oral Maxillofac Implants 2018;33:127-36. https://doi.org/10.11607/jomi.5588
  25. Dixon DL, Breeding LC, Sadler JP, McKay ML. Comparison of screw loosening, rotation, and deflection among three implant designs. J Prosthet Dent 1995;74:270-8. https://doi.org/10.1016/S0022-3913(05)80134-9
  26. Barth T, Ulrici V. Implantate unter prothetischer Funktion. Implantologie 2018;69:890-901. 
  27. Anglin C, Wyss UP, Pichora DR. Mechanical testing of shoulder prostheses and recommendations for glenoid design. J Shoulder Elbow Surg 2000;9:323-31. https://doi.org/10.1067/mse.2000.105451
  28. Morneburg TR, Proschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont 2002;15:20-7.
  29. Morneburg TR, Proschel PA. In vivo forces on implants influenced by occlusal scheme and food consistency. Int J Prosthodont 2003;16:481-6.
  30. Kampe T, Haraldson T, Hannerz H, Carlsson GE. Occlusal perception and bite force in young subjects with and without dental fillings. Acta Odontol Scand 1987;45:101-7. https://doi.org/10.3109/00016358709098364
  31. Bates JF, Stafford GD, Harrison A. Masticatory function - a review of the literature. III. Masticatory performance and efficiency. J Oral Rehabil 1976;3:57-67. https://doi.org/10.1111/j.1365-2842.1976.tb00929.x
  32. Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 2005;20:425-31. 
  33. Steinebrunner L, Wolfart S, Bossmann K, Kern M. In vitro evaluation of bacterial leakage along the implant-abutment interface of different implant systems. Int J Oral Maxillofac Implants 2005;20:875-81.
  34. Roberts EE, Bailey CW, Ashcraft-Olmscheid DL, Vandewalle KS. Fracture resistance of titanium-based lithium disilicate and zirconia implant restorations. J Prosthodont 2018;27:644-50. https://doi.org/10.1111/jopr.12765
  35. Heilemann M, Wendler T, Munst P, Schleifenbaum S, Scholz R, Voigt C. A novel micromotion measurement method to gain instructive insight into the acetabular bone-implant interface. Med Eng Phys 2020;86:138-45. https://doi.org/10.1016/j.medengphy.2020.11.002
  36. Kim YS, Lim YJ. Primary stability and self-tapping blades: biomechanical assessment of dental implants in medium-density bone. Clin Oral Implants Res 2011;22:1179-84. https://doi.org/10.1111/j.1600-0501.2010.02089.x
  37. Hsu JT, Shen YW, Kuo CW, Wang RT, Fuh LJ, Huang HL. Impacts of 3D bone-to-implant contact and implant diameter on primary stability of dental implant. J Formos Med Assoc 2017;116:582-90. https://doi.org/10.1016/j.jfma.2017.05.005
  38. Knofler W, Barth T, Graul R, Schmenger K. Beobachtung an 10.000 Implantaten uber 20 Jahre - Eine retrospektive Studie. Einfluss von Alter, Geschlecht und Anatomie. Implantologie 2016;24:1-13. 
  39. Tokmakidis K, Wessing B, Papoulia K, Spiekermann H. Load distribution and loading concepts on teeth and implants. Z Zahnarztliche Impl 2009;25:44-52.