참고문헌
- V. ARNOLD, Mathematical Methods of Classical Mechanics, translated from the Russian by K. Vogtmann and A. Weinstein, second edition, Graduate Texts in Mathematics 60, Springer-Verlag, New York, 1980. https://doi.org/10.1007/978-1-4757-2063-1
- V. ARNOLD, Singularities of caustics and wave fronts, Mathematics and its Applications (Soviet Series) 62, Kluwer Academic Publishers Group, Dordrecht, 1990. https://doi.org/10.1007/978-94-011-3330-2
- V. ARNOLD, et al., Singularity Theory. II, Dynamical Systems VIII, Encyclopaedia Math. Sci., Vol. 39, Springer-Verlag, Berlin, 1993.
- V. ARNOLD, S. GUSEIN-ZADE, A. VARCHENKO, Singularities of differentiable maps. Vol. I, translated from Russian by Ian Porteous and Mark Reynolds, Monographs in Mathematics 82, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4612-5154-5
- T. BARANIECKI, et al., System for laser microcladding of metal powders, Przeglad Spawalnictwa 9, 2011.
- F. BERON-VERA, et al., Ray dynamics in a long-range acoustic propagation experiment, J. Acoust. Soc. Am. 114 (2003), 1226-1242. https://doi.org/10.1121/1.1600724
- J. BRUCE, P. GIBLIN, What Is an Envelope?, The Mathematical Gazette 65(433) (1981), 186-192. https://doi.org/10.2307/3617131
- A. CAYLEY, A memoir upon caustics, Philos. Trans. Roy. Soc. London 147 (1857), 273-312; Collected Works 2. 336-380. https://doi.org/10.1098/rstl.1857.0014
- A. CLAUSEN, C. STRUB, A general and intuitive envelope thorem, Edinburgh School of Economics Discussion Paper Series, ESE Discussion Papers, No. 274, 2016.
- J. DARBOUX, Lecons sur la Theorie Generale des Surfaces, Band 2, Buch 5, 1894.
- M. FRIEDMAN, K. KRAUTHAUSEN, (edited) Model and Mathematics: From the 19th to the 21st Century, 2022, 180-181. https://doi.org/10.1007/978-3-030-97833-4
- R. HEATH, Geometrical Optics, Cambridge University Press, 1887.
- R. HERMAN, A Treatise on Geometrical Optics, Cambridge University Press, 1900.
- C. HUYGENS, Abhandlung uber das licht (written 1678, published 1690), German transl., Leipzig, 1913.
- A. KNESER, Ableitung hinreichender Bedingungen des Maximum oder Minimum einfacher Integrale aus der Theorie der Zweiten Variation, Math.Annalen, Band 51, 1898.
- J. LAWRENCE, A Catalog of Special Plane Curves, Dover, New York, 1972.
- E. LOCKWOOD, A Book of Curves, Cambridge University Press, 1961.
- B. MCDONALD, W. KUPERMAN, Time domain formulation for pulse propagation including nonlinear behavior at a caustic, J. Acoust. Soc. Am., 81 (1987), 1406-1417. https://doi.org/10.1121/1.394546
- P. MILGROM, I. SEGAL, Envelope theorems for arbitrary choice sets, Econometrica, 70(2) (2002), 583-601. https://doi.org/10.1111/1468-0262.00296
- S. PATELA, Principle of operation, properties and parameters of optical fibers, 2013. http://www-old.wemif.pwr.wroc.pl/spatela/pdfy/0020.pdf
- B. PERCEL, The effect of caustics in acoustics. inverse scattering experiments, PhD dissertation, Houston, Texas: Rice University; 1989. http://www.caam.rice.edu/caam/trs/89/TR89-03.pdf
- V. POHL, How to Enrich Geometry Using String Designs, National Council of Teachers of Mathematics, 1986.
- T. ROW, Geometric Exercises in Paer Folding, W. W. Beman and E. E. Smith, eds, Open Court, 1917.
- G. SCARPELLO, A. SCIMONE, The Work of Tschirnhaus, La Hire and Leibniz on Catacaustics and the Birth of Envelopes of Lines in the 17th Century, Arch. Hist. Exact Sci. 59 (2005), 223-250. https://doi.org/10.1007/s00407-004-0092-7
- P. von SEIDEL, Uber die Brennflache eines Strahlenbundels, welches durch ein System von centrirten spharischen Glasern hindurch gegangen ist, Monatsberichte der Koniglichen Preussische Akademie der Wissenschaften zu Berlin, (1862) 695-705.
- D. STRUIK, Outline of a History of Differential Geometry: I, Isis, Apr., 1933, 19(1) (1933), 92-120. https://doi.org/10.1086/346723
- R. THOM, Sur la theorie des enveloppes, J. Math. Pures Appl. 41(9) (1962), 177-192.
- J. VINER, Cost Curves and Supply Curves, Zeitschrift fur Nationalokonomie 3(1) (1931), 23-46. https://doi.org/10.1007/BF01316299
- R. YATES, Curves and Their Properties, National Council of Teachers of Mathematics, 1952 (reprinted 1974).
- E. ZERMELO, Untersuchungen zur Variations-Rechnung, Berlin(dissertation), 1894.