DOI QR코드

DOI QR Code

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Younggeun Yoo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jinwook Kim (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Junghee Park (Department of Civil and Environmental Engineering, Incheon National University)
  • Received : 2024.05.15
  • Accepted : 2024.08.20
  • Published : 2024.07.25

Abstract

We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).

References

  1. Andrus, R.D. and Stokoe II, K.H. (2000), "Liquefaction resistance of soils from shear-wave velocity", J. Geotech. Geoenviron. Eng., 126(11), 1015-1025. https://doi.org/10.1061/(asce)1090-0241(2000)126:11(1015)
  2. ASTM, D. (2020), Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM Stand. ASTM, D2435/C2435M-11.
  3. Brown, L.T., Boore, D.M. and Stokoe, K.H. (2002), "Comparison of shear-wave slowness profiles at 10 strong-motion sites from noninvasive SASW measurements and measurements made in boreholes", Bull. Seismol. Soc. Am., 92(8), 3116-3133. https://doi.org/10.1785/0120020030
  4. Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot .1990.40.3.329
  5. Byun, Y.H., Hong, W.T. and Lee, J.S. (2015), "Characterization of railway substructure using a hybrid cone penetrometer", Smart Struct. Syst., Int. J., 15(4), 1085-1101. http://dx.doi.org/10.12989/sss.2015.15.4.1085
  6. Chang, M.F., Yu, G., Na, Y.M. and Choa, V. (2006), "Evaluation of relative density profiles of sand fill at a reclaimed site", Can. Geotech. J., 43(9), 903-914. https://doi.org/10.1139/t06-053
  7. Chian, S.C., Tan, B.C.V. and Sarma, A. (2017), "Reprint of: Projectile penetration into sand: Relative density of sand and projectile nose shape and mass", Int. J. Impact Eng., 105, 80-88. https://doi.org/10.1016/j.ijimpeng.2017.03.026
  8. Choi, C., Jeong, Y.H., Baek, S.H., Kim, J.Y., Kim, N. and Cho, J.W. (2021). "A Study for Deriving Target CMV (Compaction Meter Value) of Intelligent Compaction Earthwork Quality Control", J. Geol. Soc. Korea, 37(9), 25-36. https://doi.org/10.7843/kgs.2021.37.9.25
  9. Chong, S.H. and Santamarina, J.C. (2016), "Soil compressibility models for a wide stress range", J. Geotech. Geoenviron. Eng., 142(6), 06016003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001482
  10. He, S.H., Ding, Z., Xia, T.D., Zhou, W.H., Gan, X.L., Chen, Y.Z. and Xia, F. (2020), "Long-term behaviour and degradation of calcareous sand under cyclic loading", Eng. Geol., 276, 105756. https://doi.org/10.1016/j.enggeo.2020.105756
  11. Hoang, N.Q., Kim, S.Y. and Lee, J.S. (2022), "Compressibility, stiffness and electrical resistivity characteristics of sand-diatom mixtures", Geotechnique, 72(12), 1068-1081. https://doi.org/10.1680/jgeot.20.P.136
  12. Hu, W., Li, Y., Fan, Y., Xiong, M., Luo, H., McSaveney, M., Zheng, Y. and Tang, M. (2022), "Flow amplification from cascading landslide dam failures: Insights from flume experiments", Eng. Geol., 297, 106483. https://doi.org/10.1016/j.enggeo.2021.106483
  13. Ifediniru, C. and Ekeocha, N.E. (2022), "Performance of cement-stabilized weak subgrade for highway embankment construction in Southeast Nigeria", Int. J. Geo-Eng., 13(1), 1. https://doi.org/10.1186/s40703-021-00166-z
  14. Ji, Y., Kim, B. and Kim, K. (2021), "Evaluation of liquefaction potentials based on shear wave velocities in Pohang City, South Korea", Int. J. Geo-Eng., 12, 1-10. https://doi.org/10.1186/s40703-020-00132-1
  15. Karimpour-Fard, M., Zarbakhash, S., Soufi, G.R., Ahadi, A. and Naveen, B.P. (2020), "Design, fabrication and calibration of a tall pneumatic oedometer apparatus", Measurement, 163, 107985. https://doi.org/10.1016/j.measurement.2020.107985
  16. Kim, D.S., Shin, M.K. and Park, H.C. (2001), "Evaluation of density in layer compaction using SASW method", Soil Dyn. Earthq. Eng., 21(1), 39-46. https://doi.org/10.1016/S0267-7261(00)00076-2
  17. Kim, S.Y., Lee, J.S. and Hong, W.T. (2021), "Subgrade assessment using automated dynamic cone penetrometer to manage geo-infrastructures", Smart Struct. Syst., Int. J., 27(5), 861-870. https://doi.org/10.12989/sss.2021.27.5.861
  18. Kim, N., Park, G., Kim, S.Y., Lee, J.S. and Park, J. (2024), "Physics-inspired geophysical assessment of liquefaction potential in Pohang, South Korea", Acta Geotechnica, 1-15. https://doi.org/10.1007/s11440-023-02083-0
  19. Lee, J.S. and Santamarina, J.C. (2005), "Bender elements: performance and signal interpretation", J. Geotech. Geoenviron. Eng., 131(9), 1063-1070. https://doi.org/10.1061/(asce)1090-0241(2005)131:9(1063)
  20. Lyu, C., Park, J. and Carlos Santamarina, J. (2021), "Depth-dependent seabed properties: Geoacoustic assessment", J. Geotech. Geoenviron. Eng., 147(1), 04020151. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002426
  21. MacRobert, C.J., Bernstein, G.S. and Nchabeleng, M.M. (2019), "Dynamic cone penetrometer (DCP) relative density correlations for sands", Soils Rocks, 42(2). https://doi.org/10.28927/SR.422201
  22. Mohammadi, S.D., Nikoudel, M.R., Rahimi, H. and Khamehchiyan, M. (2008), "Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils", Eng. Geol., 101(3-4), 195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
  23. Mokhtari, M., Shariatmadari, N., Heshmati R, A.A. and Salehzadeh, H. (2015), "Design and fabrication of a large-scale oedometer", J. Cent. South Univ., 22, 931-936. https://doi.org/10.1007/s11771-015-2603-x
  24. Naing, T., Pramumijoyo, S. and Kawase, H. (2015), "Estimation of S-Wave Velocity Structures in Yogyakarta Basin, Indonesia", J. Appl. Geol., 1(2). https://doi.org/10.22146/jag.7228
  25. NEHRP (2003), Recommended provisions for seismic regulations for new buildings and other structures, In: Building Seismic Safety Council (BSSC) for the Federal Emergency Management Agency (FEMA 450), FEMA, Washington Part 1: Provisions.
  26. Pestana, J.M. and Whittle, A.J. (1995), "Compression model for cohesionless soils", Geotechnique, 45(4), 611-631. https://doi.org/10.1680/geot.1995.45.4.611
  27. Park, G., Kim, N., Hong, W.T. and Lee, J.S. (2022), "Rod effects on transferred energy into SPT sampler using smart measurement system", Smart Struct. Syst., Int. J., 30(2), 159-172. https://doi.org/10.12989/sss.2022.30.2.159
  28. Santamarina, J.C., Klein, A. and Fam, M.A. (2001), "Soils and waves: Particulate materials behavior, characterization and process monitoring", J. Soils Sediments, 1(2), 130-130. https://doi.org/10.1007/bf02987719
  29. Spagnoli, G. and Shimobe, S. (2020), "An overview on the compaction characteristics of soils by laboratory tests", Eng. Geol., 278, 105830. https://doi.org/10.1016/j.enggeo.2020.105830
  30. Stewart, W.P. and Campanella, R.G. (1993), "Practical aspects of in situ measurements of material damping with the seismic cone penetration test", Can. Geotech. J., 30(2), 211-219. https://doi.org/10.1680/geot.1995.45.4.611
  31. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John wiley & sons.