• Title/Summary/Keyword: compressibility model

Search Result 142, Processing Time 0.035 seconds

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc-Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.659-666
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological(ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.438-443
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological (ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

  • PDF

Spiral Waves and Shocks in Discs around Black Holes: Low Compressibility and High Compressibility Models

  • LANZAFAME GIUSEPPE;BELVEDERE GAETANO
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.313-315
    • /
    • 2001
  • Some authors have concluded that spiral structures and shocks do not develop if an adiabatic index $\gamma$ > 1.16 is adopted in accretion disc modelling, whilst others have claimed that they obtained well defined spirals and shocks adopting a $\gamma$ = 1.2 and a $M_2/ M_1$ = 1 stellar mass ratio. In our opinion, it should be possible to develop spiral structures for low compressibility gas accretion discs if the primary component is a black hole. We considered a primary black hole of 8M0 and a small secondary component of 0.5M$\bigodot$ to favour spiral structures formations and possible spiral shocks via gas compression due to a strong gravitational attraction. We performed two 3D SPH simulations and two 2D SPH simulations and characterized a low compressibility model and a high compressibility model for each couple of simulations. 2D models reveal spiral structures existence. Moreover, spiral shocks are also evident in high compressibility 2D model at the outer disc edge. We believe that we could develop even well defined spiral shocks considering a more massive primary component.

  • PDF

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Influence of Compressibility Modification to k-ε Turbulence Models for Supersonic Base Flow

  • Jeon, Sang-Eon;Park, Soo-Hyung;Byun, Yung-Hwan;Kwon, Jang-Hyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.188-198
    • /
    • 2012
  • An improvement to the k-${\varepsilon}$ turbulence model is presented and is shown to lead to better agreement with data regarding supersonic base flows. The improvement was achieved by imposing a grid-independent realizability constraint in the Launder-Sharma k-${\varepsilon}$ model. The effects of compressibility were also examined. The numerical results show that the modified Launder-Sharma model leads to some improvement in the prediction of the velocity and turbulent kinetic energy profiles. Compressibility corrections also lead to better agreement in both the turbulent kinetic energy and the Reynolds stress profiles with the experimental data.

On the compressibility of bread dough

  • Wang, Chunguang;Dai, Shaocong;Tanner, Roger I.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.127-131
    • /
    • 2006
  • Few investigations of bread dough compressibility have been reported in the literature, despite the fact that high compression stresses are often reached in processing. Here we report some experiments on the compressibility of an Australian wheat bread dough under compressive stresses up to 5 MPa, and show that the results are consistent with a mathematical model of bread dough containing entrained air. The implications for tensile testing are also considered.

Air Compressibility Effect in CFD-based Water Impact Analysis (CFD 기반 유체충격 해석에서 공기 압축성 효과)

  • Tran, Huu Phi;Ahn, Hyung-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.

On the Assessment of Compressibility Effects of Two-Equation Turbulence Models for Supersonic Transition Flow with Flow Separation

  • Sung, Hong-Gye;Kim, Seong-Jin;Yeom, Hyo-Won;Heo, Jun-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.387-397
    • /
    • 2013
  • An assessment of two-equation turbulence models, the low Reynolds k-${\varepsilon}$ and k-${\omega}$ SST models, with the compressibility corrections proposed by Sarkar and Wilcox, has been performed. The compressibility models are evaluated by investigating transonic or supersonic flows, including the arc-bump, transonic diffuser, supersonic jet impingement, and unsteady supersonic diffuser. A unified implicit finite volume scheme, consisting of mass, momentum, and energy conservation equations, is used, and the results are compared with experimental data. The model accuracy is found to depend strongly on the flow separation behavior. An MPI (Message Passing Interface) parallel computing scheme is implemented.

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle (강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가)

  • Lee, Juyong;Shin, Junsu;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2018
  • The objective of this study is to investigate the turbulence models with compressibility correction for large separation-flow in a supersonic convergent-divergent rectangular nozzle. As turbulence models, Yang and Shih's Low-Re $k-{\varepsilon}$ model, Mener's $k-{\omega}$ SST model and Wilcox's $k-{\omega}$model were evaluated. In order to get a significant compressible effects, Sarkar and Wilcox compressibility correction models were applied to the turbulence models respectively. Also, the simulation results were compared with experimental data. The turbulence model with compressibility correction model improves both of shock position and pressure recovery, but deteriorates the length of Mach disk.