DOI QR코드

DOI QR Code

Investigation of seismic performance of a premodern RC building typology after November 26, 2019 earthquake

  • Marsed Leti (Department of Civil Engineering, Faculty of Architecture and Engineering, EPOKA University) ;
  • Huseyin Bilgin (Department of Civil Engineering, Faculty of Architecture and Engineering, EPOKA University)
  • 투고 : 2023.10.27
  • 심사 : 2024.02.22
  • 발행 : 2024.03.10

초록

This study evaluates the seismic performance of a premodern six story reinforced concrete building typology designed during the communism period of Albania and build throughout the country. During the November 26, 2019 Earthquake in Albania, the most affected reinforced concrete buildings were among the old templates, lacking shear walls and inadequate reinforcement details which suffer from concrete aging. The mathematical model of the selected building is done in the environments of ZeusNL software, developed especially for earthquake engineering applications. The capacity curve of the structure is gained using the conventional static nonlinear analysis. On the other hand, the demand estimation is utilized using one of the recent methods known as Incremental Dynamic Analysis with a set of 18 ground motion records. The limit states in both curves are defined based on the modern guidelines. For the pushover, immediate occupancy (IO), life safety (LS) and collapse prevention (CP) are plotted in the same graph with capacity curve. Furthermore, on each IDA derived, the IO, CP and global instability (GI) are determined. Moreover, the IDA fractiles are generated as suggested by the literature, 16%, 50% (median) and 84%. In addition, the comparative assessment of the IDA median with capacity curve shows good correlation points. Lastly, this study shows the approach of determination of LS in IDA fractiles for further vulnerability assessment based on the local seismic hazard map with 95 and 475 return period.

키워드

참고문헌

  1. Abrahamczyk, L., Penava, D., Markusic, S., Stanko, D., Luqman Hasan, P., Haweyou, M. and Schwarz, J. (2022), "Die magnitude 6,4-Erdbeben in Albanien und kroatien-ingenieuranalyse der erdbebenschaden und erfahrungswerte fur die baunormung", Bautechnik, 99, 18-30, https://doi.org/10.1002/bate.202100070.
  2. Aliaj, S., Kociu, S., Muco, B. and Sulstarova, E. (2010), "Seismicity, seismotectonics and seismic hazard assessment in Albania", Albanian Academy of Sciences, Tirana.
  3. Applied Technology Council (ATC) (1996), Seismic Evaluation and Retrofit of Concrete Buildings, Volumes 1 and 2, California.
  4. Arkivi Qendror Teknik I Ndertimit (AQTN) (2023), Central Technical Building Archive, Available online: https://www.aqtn.gov.al/.
  5. Artioli, E., Battaglia, R. and Tralli, A. (2013), "Effects of May 2012 Emilia Earthquake on industrial buildings of Early '900 on the Po River Line", Eng. Struct., 56, 1220-1233. https://doi.org/10.1016/j.engstruct.2013.06.026.
  6. ATC-40 (1996), Seismic Evaluation and Retrofit, Seismic Safety Commission, California.
  7. Barros, R.C. and Almeida, R. (2005), "Pushover analysis of asymmetric three-dimensional building frames", J. Civil Eng. Manage., 11(1), 3-12. https://doi.org/10.3846/13923730.2005.9636327.
  8. Bilgin, H. and Hysenlliu, M. (2020), "Comparison of near and far-fault ground motion effects on low and mid-rise masonry buildings", J. Build. Eng., 30, 101248. https://doi.org/10.1016/j.jobe.2020.101248.
  9. Bilgin, H. and Leti, M. (2021), "Structural damages of Durres (Albania) Earthquake", PACE-2021 International Congress on the Phenomenological Aspects of Civil Engineering, Erzurum, Turkey.
  10. Bilgin, H., Hadzima-Nyarko, M., Isik, E., Ozmen, H.B. and Harirchian, E. (2022), "A comparative study on the seismic provisions of different codes for RC buildings", Struct. Eng. Mech., 83(2), 195-206. https://doi.org/10.12989/sem.2022.83.2.195.
  11. Bilgin, H., Shkodrani, N., Hysenlliu, M., Baytan, O.H., Isik, E. and Harirchian, E. (2022), "Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes", Eng. Fail. Anal., 131, 105824. https://doi.org/10.1016/j.engfailanal.2021.105824.
  12. Cherif, K. (2021), "Github. Retrieved June 23, 2021", from https://github.com/kawache/Python-B-splineexamples/blob/master/README.md.
  13. Cirak Karakas, C., Palanci, M. and Senel, S.M. (2022), "Fragility based evaluation of different code based assessment approaches for the performance estimation of existing buildings", Bull. Earthq. Eng., 20, 1685-1716. https://doi.org/10.1007/s10518-021-01292-w.
  14. Crowley, H., Despotaki, V. and Silva, V. (2021), "Model of seismic design lateral force levels for the existing reinforced concrete European building stock", Bull. Earthq. Eng., 19, 2839-2865. https://doi.org/10.1007/s10518-021-01083-3.
  15. Del Gaudio, C., De Martino, G., Di Ludovico, M., Manfredi, G., Prota, A., Ricci, P. and Verderame, G.M. (2017), "Empirical fragility curves from damage data on RC buildings after the 2009 L'Aquila earthquake", Bull. Earthq. Eng., 15, 1425-1450. https://doi.org/10.1007/s10518-016-0026-1.
  16. Demir, A., Palanci, M. and Kayhan, A.H. (2021), "Probabilistic assessment for spectrally matched real ground motion records on distinct soil profiles by simulation of SDOF systems", Earthq. Struct., 21(4), 395. https://doi.org/10.12989/eas.2021.21.4.395.
  17. EC-8-P-1 Eurocode 8 (2014), Design of Structures for Earthquake Resistance-Part 1, Vol. 3.
  18. Elnashai, A. (2002), Zeus NL-A System for Inelastic Analysis of Structures, Creating a Multi-hazard Approach to Engineering, Urbana-Champaign.
  19. Elnashai, A.S. and Sarno, L.D. (2008), Fundamentals of Earthquake Engineering, John Wiley & Sons Ltd., London.
  20. Elnashai, A.S., Papanikolaou, V. and Lee, D.H. (2002), ZEUS-NL User Manual, Mid-Amerika Earthquake Center, University of Illinois at Urbana-Champaign.
  21. Elnashai, A.S., Papanikolaou, V.K. and Lee, D.H. (2011), Zeus-NL-A Program for Inelastic Dynamic Analysis of Structures V1.9.0.
  22. Elnashai, A.S., Papanikolaou, V.K. and Lee, D.H. (2012), Zeus NL-A System for Inelastic Analysis of Structures, User Manual V1.8.9, Vol. 3304.
  23. Erberik, M.A. and Elnashai, A.S. (2004), "Fragility analysis of flat-slab structures", Eng. Struct., 26(7), 937-948. https://doi.org/10.1016/j.engstruct.2004.02.012.
  24. Eurocode 8 (1996), Design Provisions for Earthquake Resistance of Structures, British Standards Institution, London.
  25. Fajfar, P. and Gaspersic, P. (1996), "The N2 method for the seismic damage analysis of RC buildings", Earthq. Eng. Struct. Dyn., 25(1), 31-46. https://doi.org/10.1002/(SICI)1096-9845(199601)25:1<31::AID-EQE534>3.0.CO;2-V.
  26. FEMA 440 (2005), Improvement of Nonlinear Static Seismic Analysis Procedures, Vol. 440.
  27. FEMA365 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC.
  28. FEMA-440 (2005), Improvement of Nonlinear Static Seismic Analysis Procedures, Federal Emergency Management Agency, Washington, D.C.
  29. Goel, R.K., Eeri, M., Chopra, A.K. and Eeri, M. (2004), "Evaluation of modal and FEMA pushover analyses: SAC buildings", Earthq. Spectra, 20, 225-254. https://doi.org/10.1193/1.1646390.
  30. Hueste, M.B.D. and Bai, J. (2007), "Seismic retrofit of a reinforced concrete flat-slab structure: Part I-Seismic performance evaluation", Eng. Struct., 29(6), 1165-1177. https://doi.org/10.1016/j.engstruct.2006.07.023.
  31. Hysenlliu, M., Bilgin, H., Bidaj, A. and Leti, M. (2020), "Structural performance of URM school buildings during the 2019 Albania earthquakes", Challenge, 6(4), 215-231. https://doi.org/10.20528/cjsmec.2020.04.006.
  32. IGJEO (2023), Instituti i Gjeoshkencave, Available online: https://www.geo.edu.al/Rreziqet/Rreziku_Gjeologjik_dhe_Sizmik/.
  33. Isik, E., Harirchian, E., Bilgin, H. and Jadhav, K. (2021), "The effect of material strength and discontinuity in RC structures according to different site-specific design spectra", Res. Eng. Struct. Mater., 7, 413-430. https://doi.org/10.17515/resm2021.273st0303.
  34. Jeong, S.H. and Elnashai, A.S. (2005), "Analytical assessment of an irregular RC frame for full-scale 3D Pseudo-Dynamic testing Part I: Analytical model verification", J. Earthq. Eng., 9(01), 95-128. https://doi.org/10.1080/13632460509350535.
  35. Kayhan, A.H., Demir, A. and Palanci, M. (2018), "Statistical evaluation of maximum displacement demands of SDOF systems by code-compatible nonlinear time history analysis", Soil Dyn. Earthq. Eng., 115, 513-530. https://doi.org/10.1016/j.soildyn.2018.09.008.
  36. Kazantzia, A.K., Vamvatsikos, D. and Lignosc, D.G. (2014), "Seismic performance of a steel", 11th International Conference on Structural Safety and Reliability (ICOSSAR), 69-77.
  37. KTP 2-78 (1978), Technical Design Regulations for Construction Works in Seismic Regions, Albania, Publication of Academy of Sciences and Ministry of Constructions.
  38. KTP 2-89 (1989), Technical Design Regulations for Construction Works in Seismic Regions, Albania, Publication of Academy of Sciences and Ministry of Constructions.
  39. KTP-2-78 (1978), Technical Design Regulations for Construction Works in Seismic Regions, Technical Design Regulations, 12-48.
  40. Leti, M. and Bilgin, H. (2020), "Use of Incremental Dynamic Analysis for the seismic performance assessment of RC framed structures", BCCCE-2020, 104-112.
  41. Leti, M. and Bilgin, H. (2022), "Performance of RC and masonry structures during 2019 Durres Earthquake", Civil Engineering Beyond Limit., https://doi.org/10.36937/cebel.2022.1546.
  42. Leti, M. and Bilgin, H. (2022), "Seismic performance assessment of a moment frame reinforced concrete building typology", Civil Engineering Beyond Limit., 1544. https://doi.org/10.36937/cebel.2022.1544.
  43. Li, S. and Gardoni, P. (2023), "Seismic loss assessment for regional building portfolios considering empirical seismic vulnerability functions", Bull. Earthq. Eng., 1-31. https://doi.org/10.1007/s10518-023-01793-w.
  44. Li, S., Liu, H., Du, K., Han, J., Li, Y. and Yin, L. (2023), "Empirical seismic vulnerability probability prediction model of RC structures considering historical field observation", Struct. Eng. Mech., 86(4), 547. https://doi.org/10.12989/sem.2023.86.4.547.
  45. Li, S.Q. (2023), "Empirical vulnerability estimation models considering updating the structural earthquake damage database", Soil Dyn. Earthq. Eng., 169, 107864. https://doi.org/10.1016/j.soildyn.2023.107864.
  46. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1804).
  47. NTC (2018), Aggiornamento Delle Norme Tecniche per Le Costruzioni, NTC 2018, Italy, 372.
  48. Palanci, M., Kalkan, A. and Senel, S.M. (2016), "Investigation of shear effects on the capacity and demand estimation of RC buildings", Struct. Eng. Mech., 60(6), 1021. https://doi.org/10.12989/sem.2016.60.6.1021.
  49. PEER (2020), Pacific Earthquake Engineering Research Center, University of California, Retrieved from Berkeley, http://peer.berkeley.edu/.
  50. Poiani, M., Gazzani, V., Clementi, F., Milani, G., Valente, M. and Lenci, S. (2018), "Iconic crumbling of the clock tower in Amatrice after 2016 central Italy seismic sequence: Advanced numerical insight", Procedia Struct. Integr., 11, 314-321. https://doi.org/10.1016/j.prostr.2018.11.041.
  51. Ponzo, F.C., Ditommaso, R., Nigro, A. and Iacovino, C. (2017), "Analyses of the seismic actions recorded during the 2016 Central Italy seismic sequence: Observed vs code provision values", Proceedings of the COMPDYN 2017-Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Vol. 2.
  52. Ramamoorthy, S.K., Gardoni, P. and Bracci, J.M. (2006), "Probabilistic demand models and fragility curves for reinforced concrete frames", J. Struct. Eng., 132(10), 1563-1572. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1563).
  53. Rejec, K. and Fajfar, P. (2014), "On the relation between the near collapse limit states at the element and structure level", Second European Conference on Earthquake Engineering and Seismology, 1-12.
  54. Sabegh, S., Neekmanesh, S., Lam, N., Amirsardari, A. and Taghizadieh, N. (2023), "An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls", Struct. Eng. Mech., 85(5), 655. https://doi.org/10.12989/sem.2023.85.5.655.
  55. Sarhosis, V., Giarlelis, C., Karakostas, C., Smyrou, E., Bal, I.E., Valkaniotis, S. and Ganas, A. (2022), "Observations from the March 2021 Thessaly Earthquakes: An earthquake engineering perspective for masonry structures", Bull. Earthq. Eng., 20(10), 5483-5515. https://doi.org/10.1007/s10518-022-01416-w.
  56. Shkodrani, N. and Bilgin, H. (2021), "Seismic performance of existing low-rise URM buildings considering the addition of new stories", Struct. Eng. Mech., 79(6), 767-777. https://doi.org/10.12989/sem.2021.79.6.767.
  57. Shkodrani, N., Bilgin, H. and Hysenlliu, M. (2021), "Influence of interventions on the seismic performance of URM buildings designed according to pre-modern codes", J. Res. Eng. Struct. Mater., 7(2), 315-330. http://doi.org/10.17515/resm2020.197ea0331.
  58. Shkodrani, N., Bilgin, H. and Hysenlliu, M. (2021), "Influence of interventions on the seismic performance of URM buildings designed according to pre-modern codes", Res. Eng. Struct. Mater., 7(2), 315-330. https://doi.org/10.17515/resm2020.197ea0331.
  59. Spears, P. (2004), "Parameters influencing seismic structural collapse with emphasis on vertical accelerations and the possible related risks for new and existing structures in the Central and Eastern United States", Doctoral Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
  60. USGS, U. (2020), Geological Survey, U.S. Department of the Interior, Retrieved from https://www.usgs.gov.
  61. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
  62. Vamvatsikos, D. and Cornell, C.A. (2002), "Seismic performance, capacity and reliability of structures as seen through incremental dynamic analysis", Stanford University, Stanford, CA, USA.
  63. Vamvatsikos, D. and Cornell, C.A. (2004). "Applied incremental dynamic analysis", Earthq. Spectra, 20(2), 523-553. https://doi.org/10.1193/1.1737737.
  64. Vamvatsikos, D., Jalayer, F. and Cornell, C.A. (2003), "Application of incremental dynamic analysis to an RC-structure", Proceedings of the FIB Symposium on Concrete Structures in Seismic Regions, May.
  65. Van Rossum, G. and Drake Jr, F.L. (1995), Python Tutorial, Vol. 620, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.