DOI QR코드

DOI QR Code

Effects of phytogenic feed additives in growing and finishing pigs under different stocking density

  • Hyun Ah Cho (Department of Animal Science, Chungbuk National University) ;
  • Min Ho Song (Division of Animal and Dairy Science, Chungnam National University) ;
  • Ji Hwan Lee (Department of Poultry Science, University of Georgia (UGA)) ;
  • Han Jin Oh (Department of Animal Science, Chungbuk National University) ;
  • Jae Woo An (Department of Animal Science, Chungbuk National University) ;
  • Se Yeon Chang (Department of Animal Science, Chungbuk National University) ;
  • Dong Cheol Song (Department of Animal Science, Chungbuk National University) ;
  • Seung Yeol Cho (Eugene-Bio) ;
  • Dong Jun Kim (Eugene-Bio) ;
  • Mi Suk Kim (Eugene-Bio) ;
  • Hyeun Bum Kim (Department of Animal Resources Science, Dankook University) ;
  • Jin Ho Cho (Department of Animal Science, Chungbuk National University)
  • Received : 2023.07.25
  • Accepted : 2023.11.07
  • Published : 2024.09.30

Abstract

This study was to investigate effects of different phytogenic feed additives (PFA) in grower finishing pigs with stressed by high stocking density. A total of 84 growing pigs ([Landrace × Yorkshire] × Duroc) with initial body weight (BW) of 28.23 ± 0.21 kg were used for 10 weeks (4 replicate pens with 3 pigs per pen). The dietary treatment consisted of basal diets in animal welfare density (positive control [PC]), basal diet in high stocking density (negative control [NC]), NC + 0.04% bitter citrus extract (PT1), NC + 0.01% microencapsulated blend of thymol & carvacrol (PT2), NC + 0.10% mixture of 40% bitter citrus extract and 10% microencapsulated blend of thymol and carvacrol (PT3), NC + 0.04% premixture of grape seed and grape marc extract, green tea and hops (PT4), and NC + 0.10% fenugreek seed powder (PT5). The reduction of space allowance significantly decreased (p < 0.05) growth performance (average daily gain, average daily feed intake, feed efficiency) and nutrient digestibility (dry matter, crude protein). Also, the fecal score of NC group increased (p < 0.05) compared with other groups. In blood profiles, lymphocyte decreased (p < 0.05), and neutrophil, cortisol, TNF- α increased (p < 0.05) when pigs were in high stocking density. Basic behaviors (feed intake, standing, lying) were inactive (p < 0.05) and singularity behavior (biting) were increased (p < 0.05) under high stocking density. However, PFA groups alleviated the negative effects such as reducing growth performance, nutrient digestibility, increasing stress indicators in blood and animal behavior. In conclusion, PFA groups improved the health of pigs with stressed by high stocking density and PT3 is the most effective.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01622001)" Rural Development administration, Korea.

References

  1. Kholif AE, Abdo MM, Anele UY, El-Sayed MM, Morsy TA. Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livest Sci. 2017;206:17-23. https://doi.org/10.1016/j.livsci.2017.10.002
  2. Kholif AE, Gouda GA, Galyean ML, Anele UY, Morsy TA. Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor Syst. 2019;93:1877-86. https://doi.org/10.1007/s10457-018-0292-9
  3. European Union. Council directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs (codified version). Off J Eur Union. 2009;L47:5-13.
  4. Ebeid HM, Mengwei L, Kholif AE, Hassan F, Lijuan P, Xin L, et al. Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr Microbiol. 2020;77:1271-82. https://doi.org/10.1007/s00284-020-01935-2
  5. Elghalid OA, Kholif AE, El-Ashry GM, Matloup OH, Olafadehan OA, El-Raffa AM, et al. Oral supplementation of the diet of growing rabbits with a newly developed mixture of herbal plants and spices enriched with special extracts and essential oils affects their productive performance and immune status. Livest Sci. 2020;238:104082. https://doi.org/10.1016/j.livsci.2020.104082
  6. Al-Gharabi HKB, Al-Gharawi JKM, Al-Sahlani AJA. Effect of garlic (Allium sativum) and onion (Allium cepa) water extract on some productive traits of broilers. Plant Arch. 2019;19:565-9.
  7. Alhajj MS, Alhobaishi M, Ger El Nabi AR, Al-Mufarrej SI. Immune responsiveness and performance of broiler chickens fed a diet supplemented with high levels of Chinese star anise fruit (Illicium verum Hook. f). J Anim Vet Adv. 2015;14:36-42.
  8. Khan RU, Nikousefat Z, Tufarelli V, Naz S, Javdani M, Laudadio V. Garlic (Allium sativum) supplementation in poultry diets: effect on production and physiology. Worlds Poult Sci J. 2012;68:417-24. https://doi.org/10.1017/S0043933912000530
  9. Mahima, Rahal A, Deb R, Latheef SK, Samad HA, Tiwari R, et al. Immunomodulatory and therapeutic potentials of herbal, traditional/indigenous and ethnoveterinary medicines. Pak J Biol Sci. 2012;15:754-74. https://doi.org/10.3923/pjbs.2012.754.774
  10. Ahmed ST, Hossain ME, Kim GM, Hwang JA, Ji H, Yang CJ. Effects of resveratrol and essential oils on growth performance, immunity, digestibility and fecal microbial shedding in challenged piglets. Asian-Australas J Anim Sci. 2013;26:683-90. https://doi.org/10.5713/ajas.2012.12683
  11. Emami NK, Samie A, Rahmani HR, Ruiz-Feria CA. The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Anim Feed Sci Technol. 2012;175:57-64. https://doi.org/10.1016/j.anifeedsci.2012.04.001
  12. Zhang S, Jung JH, Kim HS, Kim BY, Kim IH. Influences of phytoncide supplementation on growth performance, nutrient digestibility, blood profiles, diarrhea scores and fecal microflora shedding in weaning pigs. Asian-Australas J Anim Sci. 2012;25:1309-15. https://doi.org/10.5713/ajas.2012.12170
  13. Aji SB, Ignatius K, Ado AY, Nuhu JB, Abdulkarim A, Aliyu U, et al. Effect of feeding onion (Allium cepa) and garlic (Allium sativum) on some performance characteristics of broiler chickens. Res J Poult Sci. 2011;4:22-7. https://doi.org/10.3923/rjpscience.2011.22.27
  14. Mamoun T, Mukhtar MA, Tabidi MH. Effect of fenugreek seed powder on the performance, carcass characteristics and some blood serum attributes. Adv Res Agric Vet Sci. 2014;1:6-11.
  15. Cho JH, Kim IH. Effect of stocking density on pig production. Afr J Biotechnol. 2011;10:13688-92. https://doi.org/10.5897/AJB11.1691
  16. Hyun Y, Ellis M, Riskowski G, Johnson RW. Growth performance of pigs subjected to multiple concurrent environmental stressors. J Anim Sci. 1998;76:721-7. https://doi.org/10.2527/1998.763721x
  17. McGlone JJ, Salak JL, Lumpkin EA, Nicholson RI, Gibson M, Norman RL. Shipping stress and social status effects on pig performance, plasma cortisol, natural killer cell activity, and leukocyte numbers. J Anim Sci. 1993;71:888-96. https://doi.org/10.2527/1993.714888x
  18. Li Y, Wang C, Huang S, Liu Z, Wang H. Space allowance determination by considering its coeffect with toy provision on production performance, behavior and physiology for grouped growing pigs. Livest Sci. 2021;243:104389. https://doi.org/10.1016/j.livsci.2020.104389
  19. Cornale P, Macchi E, Miretti S, Renna M, Lussiana C, Perona G, et al. Effects of stocking density and environmental enrichment on behavior and fecal corticosteroid levels of pigs under commercial farm conditions. J Vet Behav. 2015;10:569-76. https://doi.org/10.1016/j.jveb.2015.05.002
  20. Averos X, Brossard L, Dourmad JY, de Greef KH, Edge HL, Edwards SA, et al. Quantitative assessment of the effects of space allowance, group size and floor characteristics on the lying behaviour of growing-finishing pigs. Animal. 2010;4:777-83. https://doi.org/10.1017/S1751731109991613
  21. Hyun Y, Ellis M, Curtis SE, Johnson RW. Environmental temperature, space allowance, and regrouping: additive effects of multiple concurrent stressors in growing pigs. J Swine Health Prod. 2005;13:131-8.
  22. Street BR, Gonyou HW. Effects of housing finishing pigs in two group sizes and at two floor space allocations on production, health, behavior, and physiological variables. J Anim Sci. 2008;86:982-91. https://doi.org/10.2527/jas.2007-0449
  23. Casal-Plana N, Manteca X, Dalmau A, Fabrega E. Influence of enrichment material and herbal compounds in the behaviour and performance of growing pigs. Appl Anim Behav Sci. 2017;195:38-43. https://doi.org/10.1016/j.applanim.2017.06.002
  24. Zmrhal V, Lichovnikova M, Hampel D. The effect of phytogenic additive on behavior during mild-moderate heat stress in broilers. Acta Univ Agric Silvic Mendel Brun. 2018;66:939-44. https://doi.org/10.11118/actaun201866040939
  25. NRC [National Research Council]. Nutrient requirements of swine. 11th rev. ed. Washington, DC: National Academies Press; 2012. pp. 208-38.
  26. Fenton TW, Fenton M. An improved procedure for the determination of chromic oxide in feed and feces. Can J Anim Sci. 1979;59:631-4. https://doi.org/10.4141/cjas79-081
  27. AOAC [Association of Official Analytical Chemists] International. Official methods of analysis of AOAC International. 21st ed. Gaithersburg, MD: AOAC International; 2019.
  28. Williams CH, David DJ, Iismaa O. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J Agric Sci. 1962;59:381-5. https://doi.org/10.1017/S002185960001546X
  29. Marquardt RR, Jin LZ, Kim JW, Fang L, Frohlich AA, Baidoo SK. Passive protective effect of egg-yolk antibodies against enterotoxigenic Escherichia coli K88+ infection in neonatal and early-weaned piglets. FEMS Immunol Med Microbiol. 1999;23:283-8. https://doi.org/10.1111/j.1574-695X.1999.tb01249.x
  30. Yang KY, Jeon JH, Kwon KS, Choi HC, Ha JJ, Kim JB, et al. Classification of behavior at the signs of parturition of sows by image information analysis. J Korea Acad Ind Coop Soc. 2018;19:607-13. https://doi.org/10.5762/KAIS.2018.19.12.607
  31. Bilal RM, Hassan F, Farag MR, Nasir TA, Ragni M, Mahgoub HAM, et al. Thermal stress and high stocking densities in poultry farms: potential effects and mitigation strategies. J Therm Biol. 2021;99:102944. https://doi.org/10.1016/j.jtherbio.2021.102944
  32. EFSA [European Food Safety Authority]. Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to welfare of weaners and rearing pigs: effects of different space allowances and floor. EFSA J. 2005;3:268. https://doi.org/10.2903/j.efsa.2005.268
  33. Feddes JJ, Emmanuel EJ, Zuidhoft MJ. Broiler performance, body weight variance, feed and water intake, and carcass quality at different stocking densities. Poult Sci. 2002;81:774-9. https://doi.org/10.1093/ps/81.6.774
  34. Chegini S, Kiani A, Parizadian Kavan B, Rokni H. Effects of propolis and stocking density on growth performance, nutrient digestibility, and immune system of heat-stressed broilers. Ital J Anim Sci. 2019;18:868-76. https://doi.org/10.1080/1828051X.2018.1483750
  35. Estevez M. Oxidative damage to poultry: from farm to fork. Poult Sci. 2015;94:1368-78. https://doi.org/10.3382/ps/pev094
  36. Sohail MU, Ijaz A, Yousaf MS, Ashraf K, Zaneb H, Aleem M, et al. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult Sci. 2010;89:1934-8. https://doi.org/10.3382/ps.2010-00751
  37. Spicer HM, Aherne FX. The effects of group size/stocking density on weanling pig performance and behavior. Appl Anim Behav Sci. 1987;19:89-98. https://doi.org/10.1016/0168-1591(87)90206-1
  38. Greene ES, Cauble R, Kadhim H, de Almeida Mallmann B, Gu I, Lee SO, et al. Protective effects of the phytogenic feed additive "comfort" on growth performance via modulation of hypothalamic feeding- and drinking-related neuropeptides in cyclic heat-stressed broilers. Domest Anim Endocrinol. 2021;74:106487. https://doi.org/10.1016/j.domaniend.2020.106487
  39. Li HL, Zhao PY, Lei Y, Hossain MM, Kang J, Kim IH. Dietary phytoncide supplementation improved growth performance and meat quality of finishing pigs. Asian-Australas J Anim Sci. 2016;29:1314-21. https://doi.org/10.5713/ajas.15.0309
  40. Hashemzadeh F, Rafeie F, Hadipour A, Rezadoust MH. Supplementing a phytogenicrich herbal mixture to heat-stressed lambs: growth performance, carcass yield, and muscle and liver antioxidant status. Small Rumin Res. 2022;206:106596. https://doi.org/10.1016/j.smallrumres.2021.106596
  41. Yan L, Meng QW, Kim IH. Effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weanling pigs. Livest Sci. 2012;145:189-95. https://doi.org/10.1016/j.livsci.2012.02.001
  42. Bartos P, Dolan A, Smutny L, Sistkova M, Celjak I, Soch M, et al. Effects of phytogenic feed additives on growth performance and on ammonia and greenhouse gases emissions in growing-finishing pigs. Anim Feed Sci Technol. 2016;212:143-8. https://doi.org/10.1016/j.anifeedsci.2015.11.003
  43. Mucha W, Witkowska D. The applicability of essential oils in different stages of production of animal-based foods. Molecules. 2021;26:3798. https://doi.org/10.3390/molecules26133798
  44. Czech A, Kowalczuk E, Grela E. The effect of a herbal extract used in pig fattening on the animals' performance and blood components. Ann Univ Mariae Curie Sklodowska Sect EE Zootech. 2009;27:25-33. https://doi.org/10.2478/v10083-009-0009-7
  45. Wenk C. Herbs and botanicals as feed additives in monogastric animals. Asian-Australas J Anim Sci. 2003;16:282-9. https://doi.org/10.5713/ajas.2003.282
  46. Frankic T, Voljc M, Salobir J, Rezar V. Use of herbs and spices and their extracts in animal nutrition. Acta Agric Slov. 2009;94:95-102. https://doi.org/10.14720/aas.2009.94.2.14834
  47. Amad AA, Manner K, Wendler KR, Neumann K, Zentek J. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chickens. Poult Sci. 2011;90:2811-6. https://doi.org/10.3382/ps.2011-01515
  48. Hafeez A, Manner K, Schieder C, Zentek J. Effect of supplementation of phytogenic feed additives (powdered vs. encapsulated) on performance and nutrient digestibility in broiler chickens. Poult Sci. 2016;95:622-9. https://doi.org/10.3382/ps/pev368
  49. Lee KW, Everts H, Kappert HJ, Frehner M, Losa R, Beynen AC. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br Poult Sci. 2003;44:450-7. https://doi.org/10.1080/0007166031000085508
  50. Jamroz D, Wertelecki T, Houszka M, Kamel C. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J Anim Physiol Anim Nutr. 2006;90:255-68. https://doi.org/10.1111/j.1439-0396.2005.00603.x
  51. Giannenas I, Bonos E, Christaki E, Florou-Paneri P. Essential oils and their applications in animal nutrition. Med Aromat Plants. 2013;2:140.
  52. Panghal M, Kaushal V, Yadav JP. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases. Ann Clin Microbiol Antimicrob. 2011;10:21. https://doi.org/10.1186/1476-0711-10-21
  53. Fiesel A, Gessner DK, Most E, Eder K. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet Res. 2014;10:196. https://doi.org/10.1186/s12917-014-0196-5
  54. Cui K, Wang Q, Wang S, Diao Q, Zhang N. The facilitating effect of tartary buckwheat flavonoids and Lactobacillus plantarum on the growth performance, nutrient digestibility, antioxidant capacity, and fecal microbiota of weaned piglets. Animals. 2019;9:986. https://doi.org/10.3390/ani9110986
  55. Oh HJ, Park YJ, Cho JH, Song MH, Gu BH, Yun W, et al. Changes in diarrhea score, nutrient digestibility, zinc utilization, intestinal immune profiles, and fecal microbiome in weaned piglets by different forms of zinc. Animals. 2021;11:1356. https://doi.org/10.3390/ani11051356
  56. Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci. 2014;92:1496-503. https://doi.org/10.2527/jas.2013-6619
  57. Zhao Y, Weaver AC, Fellner V, Payne RL, Kim SW. Amino acid fortified diets for weanling pigs replacing fish meal and whey protein concentrate: effects on growth, immune status, and gut health. J Anim Sci Biotechnol. 2014;5:57. https://doi.org/10.1186/2049-1891-5-57
  58. Moeser AJ, Blikslager AT. Mechanisms of porcine diarrheal disease. J Am Vet Med Assoc. 2007;231:56-67. https://doi.org/10.2460/javma.231.1.56
  59. Panah FM, Lauridsen C, Hojberg O, Nielsen TS. Etiology of colitis-complex diarrhea in growing pigs: a review. Animals. 2021;11:2151. https://doi.org/10.3390/ani11072151
  60. Cho JH, Chen YJ, Min BJ, Kim HJ, Kwon OS, Shon KS, et al. Effects of essential oils supplementation on growth performance, IgG concentration and fecal noxious gas concentration of weaned pigs. Asian-Australas J Anim Sci. 2006;19:80-5. https://doi.org/10.5713/ajas.2006.80
  61. Caprarulo V, Turin L, Hejna M, Reggi S, Dell'Anno M, Riccaboni P, et al. Protective effect of phytogenic based additives in enterotoxigenic Escherichia coli challenged piglets [Preprint]. 2022 [cited 2023 Jun 12]. https://doi.org/10.21203/rs.3.rs-1207181/v1
  62. Griffin JFT. Stress and immunity: a unifying concept. Vet Immunol Immunopathol. 1989;20:263-312. https://doi.org/10.1016/0165-2427(89)90005-6
  63. Campbell TW. Clinical pathology. In: Mader DR, editor. Reptile medicine and surgery. Philadelphia, PA: W.B. Saunders; 1996. p. 248-57.
  64. Dhabhar FS. Stress-induced augmentation of immune function-the role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav Immun. 2002;16:785-98. https://doi.org/10.1016/S0889-1591(02)00036-3
  65. Demir S, Atli A, Bulut M, Okan Ibiloglu A, Gunes M, Kaya MC, et al. Neutrophil-lymphocyte ratio in patients with major depressive disorder undergoing no pharmacological therapy. Neuropsychiatr Dis Treat. 2015;11:2253. https://doi.org/10.2147/NDT.S89470
  66. Warriss PD, Brown SN, Edwards JE, Knowles TG. Effect of lairage time on levels of stress and meat quality in pigs. Anim Sci. 1998;66:255-61. https://doi.org/10.1017/S1357729800009036
  67. Oyarzun R, Paredes R, Saravia J, Morera FJ, Munoz JLP, Ruiz-Jarabo I, et al. Stocking density affects the growth performance, intermediary metabolism, osmoregulation, and response to stress in Patagonian blennie Eleginops maclovinus. Aquaculture. 2020;515:734565. https://doi.org/10.1016/j.aquaculture.2019.734565
  68. Chrousos GP, Kino T. Glucocorticoid action networks and complex psychiatric and/or somatic disorders. Stress. 2007;10:213-9. https://doi.org/10.1080/10253890701292119
  69. Jang JC, Jin XH, Hong JS, Kim YY. Effects of different space allowances on growth performance, blood profile and pork quality in a grow-to-finish production system. Asian-Australas J Anim Sci. 2017;30:1796-802. https://doi.org/10.5713/ajas.17.0076
  70. Colditz IG. Effects of the immune system on metabolism: implications for production and disease resistance in livestock. Livest Prod Sci. 2002;75:257-68. https://doi.org/10.1016/S0301-6226(01)00320-7
  71. Fossum C. Cytokines as markers for infections and their effect on growth performance and well-being in the pig. Domest Anim Endocrinol. 1998;15:439-44. https://doi.org/10.1016/s0739-7240(98)80001-5
  72. Fan J, Molina PE, Gelato MC, Lang CH. Differential tissue regulation of insulin-like growth factor-I content and binding proteins after endotoxin. Endocrinology. 1994;134:1685-92. https://doi.org/10.1210/endo.134.4.7511091
  73. Johnson OL, Jaworowicz W, Cleland JL, Bailey L, Charnis M, Duenas E, et al. The stabilization and encapsulation of human growth hormone into biodegradable microspheres. Pharm Res. 1997;14:730-5. https://doi.org/10.1023/A:1012142204132
  74. Murtaugh MP, Baarsch MJ, Zhou Y, Scamurra RW, Lin G. Inflammatory cytokines in animal health and disease. Vet Immunol Immunopathol. 1996;54:45-55. https://doi.org/10.1016/s0165-2427(96)05698-x
  75. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118:503-8. https://doi.org/10.1378/chest.118.2.503
  76. Kim KH, Kim KS, Kim JE, Kim DW, Seol KH, Lee SH, et al. The effect of optimal space allowance on growth performance and physiological responses of pigs at different stages of growth. Animal. 2017;11:478-85. https://doi.org/10.1017/S1751731116001841
  77. Costa LB, Luciano FB, Miyada VS, Gois FD. Herbal extracts and organic acids as natural feed additives in pig diets. S Afr J Anim Sci. 2013;43:181-93. https://doi.org/10.4314/sajas.v43i2.9
  78. Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308-16. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  79. Lee DY, Li H, Lim HJ, Lee HJ, Jeon R, Ryu JH. Anti-inflammatory activity of sulfur-containing compounds from garlic. J Med Food. 2012;15:992-9. https://doi.org/10.1089/jmf.2012.2275
  80. Pirgozliev V, Mansbridge SC, Rose SP, Lillehoj HS, Bravo D. Immune modulation, growth performance, and nutrient retention in broiler chickens fed a blend of phytogenic feed additives. Poult Sci. 2019;98:3443-9. https://doi.org/10.3382/ps/pey472
  81. Bryant MJ, Ewbank R. Some effects of stocking rate and group size upon agonistic behaviour in groups of growing pigs. Br Vet J. 1972;128:64-70. https://doi.org/10.1016/S0007-1935(17)37133-6
  82. Hemsworth PH, Rice M, Nash J, Giri K, Butler KL, Tilbrook AJ, et al. Effects of group size and floor space allowance on grouped sows: aggression, stress, skin injuries, and reproductive performance. J Anim Sci. 2013;91:4953-64. https://doi.org/10.2527/jas.2012-5807
  83. Nannoni E, Martelli G, Rubini G, Sardi L. Effects of increased space allowance on animal welfare, meat and ham quality of heavy pigs slaughtered at 160Kg. PLOS ONE. 2019;14:e0212417. https://doi.org/10.1371/journal.pone.0212417
  84. Turner SP, Ewen M, Rooke JA, Edwards SA. The effect of space allowance on performance, aggression and immune competence of growing pigs housed on straw deep-litter at different group sizes. Livest Prod Sci. 2000;66:47-55. https://doi.org/10.1016/S0301-6226(00)00159-7
  85. Menchetti L, Nanni Costa L, Zappaterra M, Padalino B. Effects of reduced space allowance and heat stress on behavior and eye temperature in unweaned lambs: a pilot study. Animals. 2021;11:3464. https://doi.org/10.3390/ani11123464
  86. Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci. 2016;8:33-42. https://doi.org/10.1016/j.cofs.2016.02.002
  87. Pearce GP, Paterson AM. The effect of space restriction and provision of toys during rearing on the behaviour, productivity and physiology of male pigs. Appl Anim Behav Sci. 1993;36:11-28. https://doi.org/10.1016/0168-1591(93)90095-7