DOI QR코드

DOI QR Code

Polymorphism analysis of tri- and tetranucleotide repeat microsatellite markers in Hanwoo cattle

  • Shil Jin (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Jeong Il Won (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Hyoun Ju Kim (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Byoungho Park (Animal Breeding & Genetics Division, National Institute of Animal Science) ;
  • Sung Woo Kim (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Ui Hyung Kim (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Sung-Sik Kang (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Hyun-Jeong Lee (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Sung Jin Moon (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Myung Sun Park (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Yong Teak Sim (miDNA Genome Research institute) ;
  • Sun Sik Jang (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Nam Young Kim (Hanwoo Research Institute, National Institute of Animal Science)
  • Received : 2023.09.17
  • Accepted : 2024.01.23
  • Published : 2024.07.31

Abstract

The Hanwoo traceability system currently utilizes 11 dinucleotide repeat microsatellite (MS) markers. However, dinucleotide repeat markers are known to have a high incidence of polymerase chain reaction (PCR) artifacts, such as stutter bands, which can complicate the accurate reading of alleles. In this study, we examined the polymorphisms of the 11 dinucleotide repeat MS markers currently employed in traceability systems. Additionally, we explored four trinucleotide repeat MS markers and one tetranucleotide repeat MS marker in a sample of 1,106 Hanwoo cattle. We also assessed the potential utility of the tri- and tetranucleotide repeat MS markers. The polymorphic information content (PIC) of the five tri- and tetranucleotide repeat markers ranged from 0.663 to 0.767 (mean: 0.722), sufficiently polymorphic and slightly higher than the mean (0.716) of the current 11 dinucleotide repeat markers. Using all 16 markers, the mean PIC was 0.718. The estimated probability of identity (PI) was 3.13 × 10-12 using the 11 dinucleotide repeat markers, 7.03 × 10-6 using the five tri- and tetranucleotide repeat markers, and 2.39 × 10-17 using all 16 markers; the respective PIhalf-sibs values were 2.69 × 10-9, 1.29 × 10-4, and 3.42 × 10-13; and the respective PIsibs values were 3.89 × 10-5, 9.6 × 10-3, and 3.69 × 10-7. The probability of exclusion1 (PE1) was 0.999864 for the 11 dinucleotide repeat markers, 0.981141 for five of the tri- and tetranucleotide repeat markers, and > 0.99 for all 16 markers; the respective PE2 values were 0.994632, 0.901369, and > 0.99; and the respective PE3 values were 0.998702, > 0.99, and > 0.99. The five investigated triand tetranucleotide repeat MS markers can be used in combination with the 11 existing MS markers to improve the accuracy of individual identification and paternity testing in Hanwoo.

Keywords

Acknowledgement

Thank you to all members of the Hanwoo Research Institute for their efforts.

References

  1. Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, et al. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Technol. 2014;56:2. https://doi.org/10.1186/2055-0391-56-2
  2. Kim S, Choi HJ, Alam M, Park MN. Breeding initiatives for Hanwoo cattle to thrive as a beef industry - a review study. J Anim Breed Genom. 2017;1:102-24. https://doi.org/10.12972/jabng.20170011
  3. Chung KY, Lee SH, Cho SH, Kwon EG, Lee JH. Current situation and future prospects for beef production in South Korea - a review. Asian-Australas J Anim Sci. 2018;31:951-60. https://doi.org/10.5713/ajas.18.0187
  4. FAO [Food and Agriculture Organization of the United Nations]. FAO animal production and health guidelines. No.9: molecular genetic characterization of animal genetic resources. Rome: FAO; 2011.
  5. Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16:1099-106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  6. Choi NR, Seo DW, Jemaa SB, Sultana H, Heo KN, Jo C, et al. Discrimination of the commercial Korean native chicken population using microsatellite markers. J Anim Sci Technol. 2015;57:5. https://doi.org/10.1186/s40781-015-0044-6
  7. Choy YH, Seo JH, Park B, Lee SS, Choi JW, Jung K, et al. Studies on genetic diversity and phylogenetic relationships of Chikso (Korea Native Brindle Cattle) using the microsatellite marker. J Life Sci. 2015;25:624-30. https://doi.org/10.5352/JLS.2015.25.6.624
  8. Kang HC, Kim KW, Kim EH, Myung CH, Lee JG, Lim HT. Genetic diversity and relationship analyses of the Korea native black goat line using microsatellite markers. Korean J Agric Sci. 2021;48:693-702. https://doi.org/10.7744/kjoas.20210058
  9. Yu JS, Suh SW, Kim DH, Park B, Choi TJ, Park MN, et al. Analysis of changes in genetic characteristic and diversity of the Brindle cow (Chikso) population. J Anim Breed Genom. 2021;5:51-7. https://doi.org/10.12972/jabng.20210004
  10. Sim YT, Na JG, Lee CS. Forensic characterization of four new bovine tri-nucleotide microsatellite markers in Korean cattle (Hanwoo). J Anim Sci Technol. 2013;55:87-93. https://doi.org/10.5187/JAST.2013.55.2.87
  11. Kim HR, Lee JW, Go MJ, Park JE, Kim MJ, Baek YC, et al. Development of a new microsatellite markers for individual identification and paternity evaluation in Hanwoo. J Agric Life Sci. 2020;54:75-83. https://doi.org/10.14397/jals.2020.54.4.75
  12. Daniels J, Holmans P, Williams N, Turic D, McGuffin P, Plomin R, et al. A simple method for analyzing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. Am J Hum Genet. 1998;62:1189-97. https://doi.org/10.1086/301816
  13. Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, et al. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011;11:591-611. https://doi.org/10.1111/j.1755-0998.2011.03014.x
  14. Sim YT. Genetic polymorphism and characteristics of autosomal microsatellite markers in Korean cattle [Ph.D. dissertation]. Kunsan, Korea: Kunsan National University; 2013.
  15. Seilsuth S, Seo JH, Kong HS, Jeon GJ. Microsatellite analysis of the genetic diversity and population structure in dairy goats in Thailand. Asian-Australas J Anim Sci. 2016;29:327-32. https://doi.org/10.5713/ajas.15.0270
  16. Marshall TC, Slate J, Kruuk LEB, Pemberton JM. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol. 1998;7:639-55. https://doi.org/10.1046/j.1365-294x.1998.00374.x
  17. Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288-95. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  18. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537-9. https://doi.org/10.1093/bioinformatics/bts460
  19. Ayres KL, Overall ADJ. api-calc 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Mol Ecol Notes. 2004;4:315-8. https://doi.org/10.1111/j.1471-8286.2004.00616.x
  20. Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248-9. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  21. Rousset F. genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8:103-6. https://doi.org/10.1111/j.1471-8286.2007.01931.x
  22. Dieringer D, Schlotterer C. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes. 2003;3:167-9. https://doi.org/10.1046/j.1471-8286.2003.00351.x
  23. Serrote CML, Reiniger LRS, Silva KB, Rabaiolli SMS, Stefanel CM. Determining the polymorphism information content of a molecular marker. Gene. 2020;726:144175. https://doi.org/10.1016/j.gene.2019.144175
  24. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314-31.
  25. Waits LP, Luikart G, Taberlet P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol. 2001;10:249-56. https://doi.org/10.1046/j.1365-294X.2001.01185.x
  26. Jamieson A, Taylor SCS. Comparisons of three probability formulae for parentage exclusion. Anim Genet. 1997;28:397-400. https://doi.org/10.1111/j.1365-2052.1997.00186.x
  27. Kathiravan P, Kataria RS, Mishra BP. Power of exclusion of 19 microsatellite markers for parentage testing in river buffalo (Bubalus bubalis). Mol Biol Rep. 2012;39:8217-23. https://doi.org/10.1007/s11033-012-1669-x
  28. Lim HT, Min HS, Moon WG, Lee JB, Kim JH, Cho IC, et al. Analysis and selection of microsatellites markers for individual traceability system in Hanwoo. J Anim Sci Technol. 2005;47:491-500. https://doi.org/10.5187/JAST.2005.47.4.491
  29. Lim HT, Seo BY, Jung EJ, Yoo CK, Yoon DH, Jeon JT. A comparison of discriminating powers between 14 microsatellite markers and 60 SNP markers applicable to the cattle identification test. J Anim Sci Technol. 2009;51:353-60. https://doi.org/10.5187/JAST.2009.51.5.353
  30. KOSIS [Korean Statistical Information Service]. Livestock statistics survey [Internet]. 2023 [cited 2023 Sep 1]. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EO221&vw_cd=MT_ZTITLE&list_id=F1A_010_1010&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE
  31. Brenig B, Schutz E. Recent development of allele frequencies and exclusion probabilities of microsatellites used for parentage control in the German Holstein Friesian cattle population. BMC Genet. 2016;17:18. https://doi.org/10.1186/s12863-016-0327-z
  32. Sun DW, Kim HK, Park MS, Lim HT, Choi KM, Lee JG. The parentage test's effect on carcass trait in Hanwoo. J Agric Life Sci. 2021;55:109-14. https://doi.org/10.14397/jals.2021.55.3.109
  33. Sun DW, Park MS, Choi KM, Kim HK, Kang HC, Lee JG, et al. Effects through parental identification of Korean cattle (Hanwoo). J Agric Life Sci. 2021;55:75-81. https://doi.org/10.14397/jals.2021.55.5.75
  34. Kim HK, Choi KM, Sun DW, Park MS, Lim HT, Lee JG. The paternity test and effect of environment on the calf auction price. J Agric Life Sci. 2020;54:67-71. https://doi.org/10.14397/jals.2020.54.6.67