DOI QR코드

DOI QR Code

Weighted single-step genome-wide association study to reveal new candidate genes for productive traits of Landrace pig in Korea

  • Jun Park (Department of Animal Biotechnology, Jeonbuk National University) ;
  • Chong-Sam Na (Department of Animal Biotechnology, Jeonbuk National University)
  • Received : 2023.07.14
  • Accepted : 2023.10.04
  • Published : 2024.07.31

Abstract

The objective of this study was to identify genomic regions and candidate genes associated with productive traits using a total of 37,099 productive records and 6,683 single nucleotide polymorphism (SNP) data obtained from five Great-Grand-Parents (GGP) farms in Landrace. The estimated of heritabilities for days to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) were 0.49, 0.49, 0.56, and 0.23, respectively. We identified a genetic window that explained 2.05%-2.34% for each trait of the total genetic variance. We observed a clear partitioning of the four traits into two groups, and the most significant genomic region for AGE and ADG were located on the Sus scrofa chromosome (SSC) 1, while BF and EMA were located on SSC 2. We conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), which revealed results in three biological processes, four cellular component, three molecular function, and six KEGG pathway. Significant SNPs can be used as markers for quantitative trait loci (QTL) investigation and genomic selection (GS) for productive traits in Landrace pig.

Keywords

References

  1. Fontanesi L, Schiavo G, Galimberti G, Calo DG, Russo V. A genomewide association study for average daily gain in Italian Large White pigs. J Anim Sci. 2014;92:1385-94. https://doi.org/10.2527/jas.2013-7059
  2. Ding R, Yang M, Wang X, Quan J, Zhuang Z, Zhou S, et al. Genetic architecture of feeding behavior and feed efficiency in a Duroc pig population. Front Genet. 2018;9:220. https://doi.org/10.3389/fgene.2018.00220
  3. Vargovic L, Bunter KL, Hermesch S. Economic benefit of additional recording for welfare traits in maternal breeding objectives for pigs. Proc Assoc Advmt Anim Breed Genet. 2021;24:406-9.
  4. Ruan D, Zhuang Z, Ding R, Qiu Y, Zhou S, Wu J, et al. Weighted single-step GWAS identified candidate genes associated with growth traits in a Duroc pig population. Genes. 2021;12:117. https://doi.org/10.3390/genes12010117
  5. Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res. 2012;94:73-83. https://doi.org/10.1017/S0016672312000274
  6. Zhang X, Lourenco D, Aguilar I, Legarra A, Misztal I. Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Front Genet. 2016;7:151. https://doi.org/10.3389/fgene.2016.00151
  7. Marques DBD, Bastiaansen JWM, Broekhuijse MLWJ, Lopes MS, Knol EF, Harlizius B, et al. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet Sel Evol. 2018;50:40. https://doi.org/10.1186/s12711-018-0412-z
  8. Luo H, Hu L, Brito LF, Dou J, Sammad A, Chang Y, et al. Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. J Anim Sci Biotechnol. 2022;13:108. https://doi.org/10.1186/s40104-022-00748-6
  9. Brunes LC, Baldi F, Lopes FB, Lobo RB, Espigolan R, Costa MFO, et al. Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle. J Anim Breed Genet. 2021;138:23-44. https://doi.org/10.1111/jbg.12496
  10. Delaneau O, Zagury JF, Robinson MR, Marchini JL, Dermitzakis ET. Accurate, scalable and integrative haplotype estimation. Nat Commun. 2019;10:5436. https://doi.org/10.1038/s41467-019-13225-y
  11. Rubinacci S, Delaneau O, Marchini J. Genotype imputation using the positional burrows wheeler transform. PLOS Genet. 2020;16:e1009049. https://doi.org/10.1371/journal.pgen.1009049
  12. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559-75. https://doi.org/10.1086/519795
  13. Aguilar I, Misztal I, Legarra A, Tsuruta S. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. J Anim Breed Genet. 2011;128:422-8. https://doi.org/10.1111/j.1439-0388.2010.00912.x
  14. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
  15. Legarra A, Robert-Granie C, Manfredi E, Elsen JM. Performance of genomic selection in mice. Genetics. 2008;180:611-8. https://doi.org/10.1534/genetics.108.088575
  16. Wang H, Misztal I, Aguilar I, Legarra A, Fernando RL, Vitezica Z, et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet. 2014;5:134. https://doi.org/10.3389/fgene.2014.00134
  17. Zhuang Z, Ding R, Peng L, Wu J, Ye Y, Zhou S, et al. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genomics. 2020;21:344. https://doi.org/10.1186/s12864-020-6742-6
  18. R Core Team R. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
  19. Yin L. CMplot: circle manhattan plot. R package version 3.2. GitHub: San Francisco, CA; 2020.
  20. Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. BLUPF90 and related programs (BGF90). In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production; 2002; Montpellier, France. Communication No. 28-07.
  21. Tang Z, Xu J, Yin L, Yin D, Zhu M, Yu M, et al. Genome-wide association study reveals candidate genes for growth relevant traits in pigs. Front Genet. 2019;10:302. https://doi.org/10.3389/fgene.2019.00302
  22. Peters SO, Kizilkaya K, Garrick DJ, Fernando RL, Reecy JM, Weaber RL, et al. Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. J Anim Sci. 2012;90:3398-409. https://doi.org/10.2527/jas.2011-4507
  23. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics. 2011;12:186. https://doi.org/10.1186/1471-2105-12-186
  24. Li Y, Pu L, Shi L, Gao H, Zhang P, Wang L, et al. Revealing new candidate genes for teat number relevant traits in Duroc pigs using genome-wide association studies. Animals. 2021;11:806. https://doi.org/10.3390/ani11030806
  25. Zeng H, Zhong Z, Xu Z, Teng J, Wei C, Chen Z, et al. Meta-analysis of genome-wide association studies uncovers shared candidate genes across breeds for pig fatness trait. BMC Genomics. 2022;23:786. https://doi.org/10.1186/s12864-022-09036-z
  26. Heidaritabar M, Bink MCAM, Dervishi E, Charagu P, Huisman A, Plastow GS. Genome-wide association studies for additive and dominance effects for body composition traits in commercial crossbred Pietrain pigs. J Anim Breed Genet. 2023;140:413-30. https://doi.org/10.1111/jbg.12768
  27. Sobajima T, Yoshimura SI, Maeda T, Miyata H, Miyoshi E, Harada A. The Rab11-binding protein RELCH/KIAA1468 controls intracellular cholesterol distribution. J Cell Biol. 2018;217:1777-96. https://doi.org/10.1083/jcb.201709123
  28. Zhang Z, Zhang Z, Oyelami FO, Sun H, Xu Z, Ma P, et al. Identification of genes related to intramuscular fat independent of backfat thickness in Duroc pigs using single-step genome-wide association. Anim Genet. 2021;52:108-13. https://doi.org/10.1111/age.13012
  29. Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, et al. The ubiquitination of ragA GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell. 2015;58:804-18. https://doi.org/10.1016/j.molcel.2015.03.033
  30. Kadoya M, Sasai N. Negative regulation of mTOR signaling restricts cell proliferation in the floor plate. Front Neurosci. 2019;13:1022. https://doi.org/10.3389/fnins.2019.01022
  31. Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 2004;24:9508-16. https://doi.org/10.1128/MCB.24.21.9508-9516.2004
  32. Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004;24:6710-8. https://doi.org/10.1128/MCB.24.15.6710-6718.2004
  33. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122:3589-94. https://doi.org/10.1242/jcs.051011
  34. Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 2019;21:63-71. https://doi.org/10.1038/s41556-018-0205-1
  35. Zhang Z, Chen Z, Diao S, Ye S, Wang J, Gao N, et al. Identifying the complex genetic architecture of growth and fatness traits in a Duroc pig population. J Integr Agric. 2021;20:1607-14. https://doi.org/10.1016/S2095-3119(20)63264-6
  36. Kools P, Van Imschoot G, van Roy F. Characterization of three novel human cadherin genes (CDH7, CDH19, and CDH20) clustered on chromosome 18q22-q23 and with high homology to chicken cadherin-7. Genomics. 2000;68:283-95. https://doi.org/10.1006/geno.2000.6305
  37. Lin J, Wang C, Redies C. Restricted expression of classic cadherins in the spinal cord of the chicken embryo. Front Neuroanat. 2014;8:18. https://doi.org/10.3389/fnana.2014.00018
  38. Gong H, Xiao S, Li W, Huang T, Huang X, Yan G, et al. Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. J Anim Breed Genet. 2019;136:3-14. https://doi.org/10.1111/jbg.12365
  39. Wei C, Zeng H, Zhong Z, Cai X, Teng J, Liu Y, et al. Integration of non-additive genome-wide association study with a multi-tissue transcriptome analysis of growth and carcass traits in Duroc pigs. Animal. 2023;17:100817. https://doi.org/10.1016/j.animal.2023.100817
  40. Che L, Yang Z, Xu M, Xu S, Che L, Lin Y, et al. Maternal nutrition modulates fetal development by inducing placental efficiency changes in gilts. BMC Genom. 2017;18:213. https://doi.org/10.1186/s12864-017-3601-1
  41. Xu Z, Jin X, Cai W, Zhou M, Shao P, Yang Z, et al. Proteomics analysis reveals abnormal electron transport and excessive oxidative stress cause mitochondrial dysfunction in placental tissues of early-onset preeclampsia. Proteomics Clin Appl. 2018;12:1700165. https://doi.org/10.1002/prca.201700165
  42. Kunzelmann K, Tian Y, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, et al. Airway epithelial cells-functional links between CFTR and anoctamin dependent Cl- secretion. Int J Biochem Cell Biol. 2012;44:1897-900. https://doi.org/10.1016/j.biocel.2012.06.011
  43. Feng M, Wang Z, Liu Z, Liu D, Zheng K, Lu P, et al. The RyR-ClCa-VDCC axis contributes to spontaneous tone in urethral smooth muscle. J Cell Physiol. 2019;234:23256-67. https://doi.org/10.1002/jcp.28892
  44. Chen D, Meng W, Shu L, Liu S, Gu Y, Wang X, et al. ANO1 in urethral SMCs contributes to sex differences in urethral spontaneous tone. Am J Physiol Renal Physiol. 2020;319:F394-402. https://doi.org/10.1152/ajprenal.00174.2020
  45. Bergamaschi M, Maltecca C, Fix J, Schwab C, Tiezzi F. Genome-wide association study for carcass quality traits and growth in purebred and crossbred pigs. J Anim Sci. 2020;98:skz360. https://doi.org/10.1093/jas/skz360
  46. Lee J, Kang JH, Kim JM. Bayes factor-based regulatory gene network analysis of genome-wide association study of economic traits in a purebred swine population. Genes. 2019;10:293. https://doi.org/10.3390/genes10040293
  47. Sun WX, Wang HH, Jiang BC, Zhao YY, Xie ZR, Xiong K, et al. Global comparison of gene expression between subcutaneous and intramuscular adipose tissue of mature Erhualian pig. Genet Mol Res. 2013;12:5085-101. https://doi.org/10.4238/2013.October.29.3
  48. Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest. 2000;105:1085-93. https://doi.org/10.1172/JCI8641
  49. Wang Z, Guo J, Guo Y, Yang Y, Teng T, Yu Q, et al. Genome-wide detection of CNVs and association with body weight in sheep based on 600K SNP arrays. Front Genet. 2020;11:558. https://doi.org/10.3389/fgene.2020.00558
  50. Wong W, Scott JD. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol. 2004;5:959-70. https://doi.org/10.1038/nrm1527
  51. Casiro S, Velez-Irizarry D, Ernst CW, Raney NE, Bates RO, Charles MG, et al. Genome-wide association study in an F2 Duroc x Pietrain resource population for economically important meat quality and carcass traits. J Anim Sci. 2017;95:545-58. https://doi.org/10.2527/jas.2016.1003
  52. Zofkie W, Southard SM, Braun T, Lepper C. Fibroblast growth factor 6 regulates sizing of the muscle stem cell pool. Stem Cell Reports. 2021;16:2913-27. https://doi.org/10.1016/j.stemcr.2021.10.006
  53. Armand AS, Laziz I, Chanoine C. FGF6 in myogenesis. Biochim Biophys Acta. 2006;1763:773-8. https://doi.org/10.1016/j.bbamcr.2006.06.005
  54. Doukas J, Blease K, Craig D, Ma C, Chandler LA, Sosnowski BA, et al. Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol Ther. 2002;5:517-27. https://doi.org/10.1006/mthe.2002.0579
  55. Srikanchai T, Murani E, Phatsara C, Schwerin M, Schellander K, Ponsuksili S, et al. Association of ZYX polymorphisms with carcass and meat quality traits in commercial pigs. Meat Sci. 2010;84:159-64. https://doi.org/10.1016/j.meatsci.2009.08.042
  56. Macalma T, Otte J, Hensler ME, Bockholt SM, Louis HA, Kalff-Suske M, et al. Molecular characterization of human zyxin. J Biol Chem. 1996;271:31470-8. https://doi.org/10.1074/jbc.271.49.31470
  57. Nix DA, Fradelizi J, Bockholt S, Menichi B, Louvard D, Friederich E, et al. Targeting of zyxin to sites of actin membrane interaction and to the nucleus. J Biol Chem. 2001;276:34759-67. https://doi.org/10.1074/jbc.M102820200
  58. Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J Cell Biol. 2005;171:209-15. https://doi.org/10.1083/jcb.200505018
  59. Hansen MDH, Beckerle MC. Opposing roles of zyxin/LPP ACTA repeats and the LIM domain region in cell-cell adhesion. J Biol Chem. 2006;281:16178-88. https://doi.org/10.1074/jbc.M512771200
  60. Hoffman LM, Nix DA, Benson B, Boot-Hanford R, Gustafsson E, Jamora C, et al. Targeted disruption of the murine zyxin gene. Mol Cell Biol. 2003;23:70-9. https://doi.org/10.1128/MCB.23.1.70-79.2003
  61. Sanchez-Roncancio C, Garcia B, Gallardo-Hidalgo J, Yanez JM. GWAS on imputed whole-genome sequence variants reveal genes associated with resistance to Piscirickettsia salmonis in rainbow trout (Oncorhynchus mykiss). Genes. 2023;14:114. https://doi.org/10.3390/genes14010114
  62. Dean JM, He A, Tan M, Wang J, Lu D, Razani B, et al. MED19 regulates adipogenesis and maintenance of white adipose tissue mass by mediating PPARγ-dependent gene expression. Cell Rep. 2020;33:108228. https://doi.org/10.1016/j.celrep.2020.108228
  63. Hwang JH, An SM, Kwon SG, Park DH, Kim TW, Kang DG, et al. Associations of the polymorphisms in DHRS4, SERPING1, and APOR genes with postmortem pH in Berkshire pigs. Anim Biotechnol. 2017;28:288-93. https://doi.org/10.1080/10495398.2017.1279171
  64. Zhao YY, Lin YQ, Xu YO. Functional identification of allograft inflammatory factor 1-like gene in luning chicken. Anim Biotechnol. 2018;29:234-40. https://doi.org/10.1080/10495398.2017.1369096
  65. Rakita A, Nikolic N, Mildner M, Matiasek J, Elbe-Burger A. Re-epithelialization and immune cell behaviour in an ex vivo human skin model. Sci Rep. 2020;10:1. https://doi.org/10.1038/s41598-019-56847-4
  66. Neustaeter A, Grossi DA, Jafarikia M, Sargolzaei M, Schenkel F. Genome-wide association study for loin marbling score in Canadian Duroc pigs. In: Proceedings of the 10th World Congress of Genetics Applied to Livestock Production; 2014; Vancouver, BC.
  67. Kokta TA, Dodson MV, Gertler A, Hill RA. Intercellular signaling between adipose tissue and muscle tissue. Domest Anim Endocrinol. 2004;27:303-31. https://doi.org/10.1016/j.domaniend.2004.05.004
  68. Yang W, Liu Z, Zhao Q, Du H, Yu J, Wang H, et al. Population genetic structure and selection signature analysis of Beijing black pig. Front Genet. 2022;13:860669. https://doi.org/10.3389/fgene.2022.860669
  69. Falker-Gieske C, Blaj I, Preuss S, Bennewitz J, Thaller G, Tetens J. GWAS for meat and carcass traits using imputed sequence level genotypes in pooled F2-designs in pigs. G3. 2019;9:2823-34. https://doi.org/10.1534/g3.119.400452
  70. Naslavsky N, Rahajeng J, Rapaport D, Horowitz M, Caplan S. EHD1 regulates cholesterol homeostasis and lipid droplet storage. Biochem Biophys Res Commun. 2007;357:792-9. https://doi.org/10.1016/j.bbrc.2007.04.022