DOI QR코드

DOI QR Code

Electrical and Hydraulic Characteristics of An Alluvial Bed under the Influence of Pumping and Rainfall

  • Woo-Ri Lim (Institute of Sustainable Earth and Environmental Dynamics (SEED), Pukyong National University) ;
  • Nam-Hoon Kim (Dohwa Engineering Co.) ;
  • Samgyu Park (Korea Institute of Geoscience and Mineral Resources) ;
  • Jae-Yeol Cheong (LILW Strategic Team, Korea Radioactive Waste Agency) ;
  • Se-Yeong Hamm (Department of Geological Sciences, Pusan National University)
  • Received : 2024.07.27
  • Accepted : 2024.08.21
  • Published : 2024.08.31

Abstract

Alluvial beds are intimately associated with electrical properties related to soil types, including clay mineral content, porosity, and water content. The hydraulic property governs water movement and storage in alluvial beds. This study revealed electrical resistivity and hydraulic properties in space and time in relation to the hydrogeological data, groundwater pumping, and rainfall infiltration into the alluvial bed located in Daesan-myeon, Changwon City. An electrical resistivity survey with electrode spacings of 2 and 4m using a dipole-dipole array indicates that electrical resistivity changes in the alluvial bed depend on groundwater pumping and rainfall events. Additionally, rainfall infiltration varies with hydraulic conductivity in the shallow zone of the alluvial bed. The 2 m electrode spacing survey confirms that electrical resistivity values decrease at shallow depths, corresponding with rainfall and increased water content in the soil, indicating rainfall infiltration approximately 1-2 m below the land surface. The 4m electrode spacing survey reveals that hydraulic conductivity (K) values and electrical resistivity (ρ) values display an inverse relationship from the surface to the water table (approximately 9 m) and at deeper levels than the water table. Notably, ρ values are impacted by pumping around the depth of the water table at 9 m. This study suggests that time-lapsed electrical resistivity surveys in space and time could be effective tools for detecting the impact of rainfall and pumping, as well as hydraulic conductivity in shallow alluvial beds.

Keywords

Acknowledgement

This research was developed from the second author's the master thesis. This research was supported by grants from the Basic Research Projects (GP2020-007) of KIGAM, funded by the Korean Ministry of Science and ICT, and Global - Learning & Academic research institution for Master's·PhD students, and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00301702).

References

  1. Anderson, T.-H., 2003, Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems & Environment, 98, 285-293.
  2. Archie, G.E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146, 54-62.
  3. Brooks, R.H. and Corey, A.T., 1964, Hydraulic properties of porous media, Hydrology paper No. 3, Colorado State University, Fort Collins.
  4. Butler, D.K. and Llopis, J.L., 1990, Assessment of anomalous seepage conditions. In: Ward, S.H. (Ed.), Geotechnical and Environmental Geophysics, 2, 153-172.
  5. Cheong, J.-Y., Hamm, S.-Y., Kim, H.-S., Ko, E.-J., Yang, K., and Lee, J.-H., 2008, Estimating hydraulic conductivity using grain-size analyses, aquifer tests, and numerical modeling in a riverside alluvial system in South Korea. Hydrogeology Journal, 16, 1129-1143.
  6. Dann, R., Close, M., Flintoft, M., Hector, R., Barlow, H., Thomas, S., and Francis, G., 2009, Characterization and estimation of hydraulic properties in an alluvial gravel vadose zone. Vadose Zone Journal, 8, 651-663.
  7. Doussan, C. and Ruy, S., 2009, Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. Water Resources Research, 45, W10408.
  8. Hamm, S.-Y., Cheong, J.-Y., Kim, H.-S., Hahn, J.-S., and Cha, Y.-H., 2005, Groundwater flow modeling in a riverbank filtration area, Daesan-myeon, Changwon city. Economic and Environmental Geology, 38, 76-78.
  9. Hamm, S.-Y., Cheong, J.-Y., Ryu, S.M., and Kim, M.J., 2002, Hydrogeological characteristics of bank storage area in Daesan-Myeon, Changwon City, Korea. Journal of the Geological Society of Korea, 38, 595-610 (main body written in Korean, and abstract written in English).
  10. Kadic, A., Denic-Jukic, V., and Jukic, D., 2018, Revealing hydrological relations of adjacent karst springs by partial correlation analysis. Hydrology Research, 49, 616-633.
  11. Kim, H.-S., 1997, Detection of groundwater table changes in alluvium using electrical resistivity monitoring method. The Journal of Engineering Geology, 7, 139-151.
  12. Kim, N.-H., 2009, Groundwater modeling using electrical resistivity data and hydraulic characteristics. M.S. thesis, Pusan National University, Busan, 192 p. (in Korean with English abstract).
  13. Kim, N.J. and Lee, H.K., 1964, Geologic map of Yeongsan area (1:50,000), Geological Survey of Korea, 52 p.
  14. Kim, S., Park, S., and Hamm, S.-Y., 2013, Relationship between hydraulic conductivity and electrical resistivity of standard sand and glass bead. Economic and Environmental Geology, 46, 76-78.
  15. Kim, S.-D., Park, S., Hamm, S.-Y., and Oh, Y.-Y., 2014, A Relationship between Hydraulic Conductivity and Electrical properties of Silty Sand on the Side of the Nakdong River. Journal of Soil and Groundwater Environment, 19930, 39-46.
  16. Koch, K., Kemna, A., Irving, J., and Holliger, K., 2011, Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand. Hydrology and Earth System Sciences, 15, 1785-1794.
  17. Lemenih, M., Karltun, E., and Olsson, M., 2005, Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agriculture, Ecosystems & Environment, 105, 373-386.
  18. Lisk, D., 1972, Trace Metals in Soils, Plants, and Animals. Advances in Agronomy, 24, 267-325.
  19. Loke, M. H., 1996, Tutorial: 2-D and 3-D Electrical Imaging Surveys, 128 p.
  20. Miller, R.B., Heeren, D.M., Fox, G.A., Halihan, T., Storm, D.E., and Mittelstet, A.R., 2014, The hydraulic conductivity structure of gravel-dominated vadose zones within alluvial floodplains. Journal of Hydrology, 513, 229-240.
  21. Min, K.D., Suh, J.H., and Kwon, B.D., 2002, Applied Geophysics, Wooseong, 276-279.
  22. Moret-Fernandez, D. and Latorre, B., 2017, Estimate of the soil water retention curve from the sorptivity and β parameter calculated from an upward infiltration experiment. Journal of Hydrology, 544, 352-362.
  23. Park, S.G. and Kim, H.J., 1994, Applicability of resistivity image profiling to geologic survey in the Keoje-do area. Economic and Environmental Geology, 27, 563-569.
  24. Richards, L.A., 1931, Capillary conduction of liquids through porous mediums. Physics, 1, 318-333.
  25. Ryu, S.-H., Hamm, S.-Y., Jeong, J.-H., Han, S.-J., Cheong, J.-Y., Seong, J., and Kim, H.-S., 2008, Hydraulic characteristics of shallow geology in Dongrae area, Busan Megacity. The Journal of Engineering Geology, 18, 55-67.
  26. Saad, R., Nawawi, M. N. M., and Mohamad, E. T., 2012, Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT). Electronic Journal of Geotechnical Engineering, 17, 369-376.
  27. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G., 2005, Electrical resistivity survey in soil science: a review. Soil and Tillage Research, 83, 173-193.
  28. Serres, Y. F., 1969, Resistivity prospecting in a United Nations groundwater project of Western Argentina. Geophysical Prospecting, 17, 449-467.
  29. Shon, H.W., Kim, J.S., Song, Y,S., Yoon, W,J., Kim, I,S., Suh, M.C., Kim, K.Y., Cho, I.K., and Kim, H.S., 1999, Exploration Geophysics of Subsurface Environment. Sigma Press, 751 p.
  30. Tiessen, H., Cuevas, E., and Chacon, P, 1994, The role of soil organic matter in sustaining soil fertility. Nature, 371, 784-785.
  31. Travelletti, J., Sailhac, P., Malet, J.-P., Grandjean, G., and Ponton, J., 2011, Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography. Hydrological Processes.
  32. U. S. Bureau of Reclamation, 1977, Ground water manual, U.S. Government Printing Office, Washington, D.C.
  33. Van Genuchten, M.Th., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892-898.
  34. Wang, J.-P., Zhuang, P.-Z., Luan, J.-Y., Liu, T.-H., Tang, Y.-R., and Zhang, J., 2019, Estimation of unsaturated hydraulic conductivity of granular soils from particle size parameters. Water, 11, 1826.
  35. Won, B., Shin, J., Hwang, S., and Hamm, S.-Y., 2013, An electrical resistivity survey for the characterization of alluvial layers at groundwater artificial recharge sites. Geophysics and Geophysical Exploration, 16, 154-162.
  36. Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing. Geophysics, 68, 931-941.