• Title/Summary/Keyword: rainfall event

Search Result 533, Processing Time 0.027 seconds

Distribution of average rainfall event-depth for overflow risk-based design of detention storage basin (월류위험도 기반 저류지 설계를 위한 평균강우량도 작성)

  • Kim, Dae Geun;Park, Sun Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.

Analysis of Storm Event Characteristics for Stormwater Best Management Practices Design (강우유출수 관리시설의 설계를 위한 강우사상 특성 분석)

  • Kim, Hak Kwan;Ji, Hyun Seo;Jang, Sun Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.73-80
    • /
    • 2017
  • The objective of this study is to investigate whether the daily rainfall depth derived from daily data represents the event rainfall depth derived from hourly data. For analysis, the 85th, 90th, and 95th percentile daily rainfall depths were first computed using daily rainfall data (1986~2015) collected at 63 weather stations. In addition, the storm event was separated by the interevent time definition (IETD) of 6, 12, 18, and 24 hr using hourly rainfall data. Based on the separated storm events, the 85th, 90th, and 95th percentile event rainfall depths were calculated and compared with the using hourly rainfall data with the 85th, 90th, and 95th percentile daily rainfall depths. The event rainfall depths computed using the IETD were greater than the daily rainfall depths. The difference between the event rainfall depth and the daily rainfall depth affects the design and size of the facility for controlling the stormwater. Therefore, the designer and policy decision-maker in designing the stormwater best management practices need to take into account the difference generated by the difference of the used rainfall data and the selected IETD.

Characteristics of Coagulants Distribution by the Pumping Rate in Pump Diffusion Mixer (Pump Diffusion Mixer에서 압력수량에 따른 응집제 확산분포 특성)

  • Park, Youngoh;Kim, Ki-Don;Park, No-Suk;Lim, Jae-Lim;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.65-71
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.

Analysis of Storm Water Run-off Characteristics to Evaluate the Intercepted Volume of CSOs during Wet Weather (강우시 합류식 하수관거의 월류수 차집용량 산정을 위한 유출특성 분석)

  • Choi, Sung-Hyun;Choi, Seung-Chol;Kim, Byoung-Ug;Rim, Jay-Myoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.320-330
    • /
    • 2004
  • Most of domestic city is served combined sewer system among various sewer system like as separate sanitary, combined sewer system and storm sewers. During the wet weather, sewer and rainfall have been overflowed because it is over capacity of the combined sewer system; that is called combined sewer overflows(CSOs) This research was carried out to investigate runoff characteristics of combined sewer and to evaluate the effective CSOs volume in Hong-Chun gun. During wet weather, SS load of first rainfall at H-1, H-2, and H-3 were 600kg/event, 370kg/event, and 289kg/event, respectively. 55 load of second rainfall were 216kg/event, 113kg/event, and 37.2kg/event. When the first rainfall, event mean concentrations(EMCs) at each site were 702mg/L, 816mgjL and 861.5mg/L. The second rainfall's event mean concentrations(EMCs) were 99.9gm/L, 161.9mg/L, 103.6mg/L. Rrst flush coefficient b at each site were 0.237,0.166, and 0.151. When the first rainfall, the flow containing 80% of pollutant mass of CSOs at each site were 0.55, 0.23, 0.48 in first rainfall, respectively. The case of second rainfall were 0.79, 0.83, 0.81. Most of all, characteristics of rainfall like as analysis of first-flush, CSOs volume, pollutant loadings is investigated to decide intercepted volume for control of CSOs.

Characteristics Analyses of Timely Rainfall Events Above Probability Precipitation on Each Frequency (빈도별 확률강우량을 초과하는 시간강우사상의 특성 분석)

  • Oh, Tae Suk;Kim, Eun Cheol;Moon, Young-Il;Ahn, Jae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.513-526
    • /
    • 2009
  • The flood control countermeasure establish for reducing of the flood damages. Design frequency usually reflects the current situation of the station, the importance and the design rainfall. Therefore, this study calculated frequency for duration maximum rainfall with the area which happened the flood damages by main heavy rainfall events recently. Also, to analyze for the temporal characteristics of rainfall event exceed by design rainfall, excess rainfall and excess frequency and excess rainfall per event calculated. To grasp the temporal variation, About excess rainfall and excess frequency and excess rainfall per event have analyzed by change and trend test. Also, rainfall observatory did grouping by cluster analysis using position of rainfall observatory and characteristic timely rainfall. For the grouping rainfall observatory by the cluster analysis calculated average of excess rainfall and excess frequency and excess rainfall per event. To compare for the temporal characteristics, the change and trend test had analyzed about excess rainfall, excess frequency by regional groups.

Application of Percentile Rainfall Event for Analysis of Infiltration Facilities used by Prior Consultation for LID (Low Impact Development)

  • Kwon, Kyung-Ho;Song, Hye-Jin
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.5-12
    • /
    • 2015
  • Purpose: Retention and infiltration of small and frequently-occurring rainfall by LID facilities account for a large proportion of the annual precipitation volume. Based on 4 standard facilities such as Porous Pavement, Infiltration Trench, Cylindrical Infiltration Well, Rectangular Infiltration Well by Seoul Metropolitan Handbook of the Prior Consultation for LID. The total retention volume of each facility was calculated according to the type and size. The Purpose of this study is to find out the quantitative relationship between Percentile Rainfall Event and Design Volume of Infiltration Facilities. Methode: For the estimation of Percentile Rainfall Event, Daily Precipitation of Seoul from 2005 to 2014 was sorted ascending and the distribution of percentile was estimated by PERCENTILE spreadsheet function. The managed Rainfall Depth and Percentile of each facility was calculated at the several sizes. In response to the rainwater charge volume of 5.5mm/hr by the Category "Private large site", the 3 types of facilities were planned for example. The calculated Rainfall Depth and Percentile were 54.4mm and 90% by the use of developed Calculation-Module based on the Spreadsheet program. Result: With this Module the existing Designed Infiltration volume which was introduced from Japan was simply converted to the Percentile-Rainfall-Event used in USA.

Analysis on the Characteristics about Representative Temporal-distribution of Rainfall in the Annual Maximum Independent Rainfall Events at Seoul using Beta Distribution (베타분포를 이용한 서울 지점 연 최대치 독립 호우사상의 대표 시간분포 특성 분석)

  • Jun, Chang Hyun;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.361-372
    • /
    • 2013
  • This study used the beta distribution to analyze the independent annual maximum rainfall events from 1961 to 2010 and decided the representative rainfall event for Seoul. In detail, the annual maximum rainfall events were divided into two groups, the upper 50% and the lower 50%. For each group, a beta distribution was derived to pass the mean location of the rainfall peaks. Finally, the representative rainfall event was decided as the rainfall histogram of the arithmetic average of the two beta distributions derived. The representative rainfall event derived has a realistic shape very similar to those observed annual maximum rainfall events, especially with the higher rainfall peak compared to that of the Huff distribution. Comparison with other rainfall distribution models shows that the temporal distribution of the representative rainfall event derived in this study is most similar to the Keifer & Chu model.

Stochastic Structure of Daily Rainfall in Korea (한국 일강우의 추계학적 구조)

  • 이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.72-80
    • /
    • 1989
  • Various analyses were made to investigate the stochastic structure of the daily rainfall in Korea. Records of daily rainfall amounts from 1951 to 1984 at Chinju Metesrological Station were used for this study. Obtained results are as follows : 1. Time series of the daily rainfall at Chinju were positively, serially correlated for the lag as large as one day. 2. Rainfall events, defined as a sequence of consecutive wet days separated by one or more dry days, showed a seasonal variation in the occurrence frequency. 3. The marginal distribution of event characteristics of each month showed significant dif- ferences each other. Events occurred in summer had longer duration and higher magnitude with higher intensity than those of events occurred in winter. 4. There were significant positive correlations among four event characteristics ; dura- tion, magnitude, average intensity, and maximum intensity. 5. Correlations among the daily rainfall amounts within an event were not significant in general. 6. There were no consistant significancy in identity or difference between the distribu- tions of daily rainfall amounts for different days within events. 7. Above mentioned characteristics of daily rainfall time series must be considered in building a stochastic model of daily rainfall.

  • PDF

Comparison of Chukwooki and Modern data Using Annual Maximum Rainfall Event Series (연최대 호우사상 계열을 이용한 측우기자료 및 현대자료의 비교)

  • Park, Minkyu;Yoo, Chulsang;Kim, Hyeon Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.137-147
    • /
    • 2010
  • In this study, Chukwooki and modern data were compared using annual maximum rainfall event series. Annual maximum series for specified rainfall duration in modern frequency analysis can not be constructed from Chukwooki data, so the concept of independent rainfall event is introduced to compare Chukwooki and modern data. Annual maximum rainfall event is determined by applying the bivariate exponential distribution and the parameters estimated annually are selected. The results using the annual parameter show that the hydrological meaning of the parameters is related to the variation of annual total rainfall amounts. For the whole independent rainfall events, the total rainfall and the rainfall intensity of Chukwooki data are greater than those of modern data, and rainfall duration of the two periods is similar. However modern annual maximum rainfall events show different characteristics that rainfall duration is much longer, rainfall intensity is similar and the total rainfall is greater than those of Chukwooki period. The increasing trend of rainfall duration and total rainfall of the modern annual rainfall events may be regarded as the one of components of the long-term cycle.

Comparison of Annual Maximum Rainfall Series and Annual Maximum Independent Rainfall Event Series (연최대치 계열과 연최대치 독립 호우사상 계열의 비교)

  • Yoo, Chul-Sang;Park, Cheol-Soon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.431-444
    • /
    • 2012
  • This study investigated the differences between annual maximum series and annual maximum independent rainfall event series with relatively short and long rainfall durations. Annual maximum independent rainfall events were selected by applying various IETDs and thresholds to the hourly rainfall data in Seoul for the duration from 1961 to 2010. Annual maximum independent rainfall event series decided were then compared with the conventional annual maximum series. Summarizing the results is as follows. First, the effect of IETD and threshold was not beyond the expected level. For example, as the IETD increases, the frequencies of independent rainfall events decreased similarly in their rate for both with short and long durations. However, as the threshold increases, the frequency of those with rather long durations decreased much higher. Second, The mean rainfall intensity of the independent rainfall events was found to remain constant regardless of their duration. This indicates that the annual maximum rainfall intensity could be found in a rainfall event with longer durations. Lastly, the difference between the annual maximum rainfall series and the annual maximum independent rainfall event series with rather short rainfall durations was found significantly large, which decreases with longer durations. This result indicates that the conventional data analysis method, especially for small basins with short concentration time, could lead an unrealistic design rainfall with little possibility of occurrence.