DOI QR코드

DOI QR Code

Preliminary Study on Black-Ice Detection Using GPS Ground Reflection Signals

  • Young-Joo Kwon (Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science and Technology) ;
  • Hyun-Ju Ban (Department of Environment, Energy, and Geoinformatics, Sejong University) ;
  • Sumin Ryu (Satellite Application Division, Korea Aerospace Research Institute) ;
  • Suna Jo (Department of Environment, Energy, and Geoinformatics, Sejong University) ;
  • Han-Sol Ryu (Department of Environment, Energy, and Geoinformatics, Sejong University) ;
  • Yerin Kim (Department of Environment, Energy, and Geoinformatics, Sejong University) ;
  • Yun-Jeong Choi (Department of Environment, Energy, and Geoinformatics, Sejong University) ;
  • Sungwook Hong (Department of Environment, Energy, and Geoinformatics, Sejong University)
  • Received : 2024.07.22
  • Accepted : 2024.08.29
  • Published : 2024.08.31

Abstract

Black ice, a thin and nearly invisible ice layer on roads and pavements, poses a significant danger to drivers and pedestrians during winter due to its transparency. We propose an efficient black ice detection system and technique utilizing Global Positioning System (GPS)-reflected signals. This system consists of a GPS antenna and receiver configured to measure the power of GPS L1 band signal strength. The GPS receiver system was designed to measure the signal power of the Right-Handed Circular Polarization (RHCP) and Left-Handed Circular Polarization (LHCP) from direct and reflected signals using two GPS antennas. Field experiments for GPS LHCP and RHCP reflection measurements were conducted at two distinct sites. We present a Normalized Polarized Reflection Index (NPRI) as a methodological approach for determining the presence of black ice on road surfaces. The field experiments at both sites successfully detected black ice on asphalt roads, indicated by NPRI values greater than -0.1 for elevation angles between 45° and 55°. Our findings demonstrate the potential of the proposed GPS-based system as a cost-effective and scalable solution for large-scale black ice detection, significantly enhancing road safety in cold climates. The scientific significance of this study lies in its novel application of GPS reflection signals for environmental monitoring, offering a new approach that can be integrated into existing GPS infrastructure to detect widespread black ice in real-time.

Keywords

Acknowledgement

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2017-0040 and supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIER-2024-01-02-035).

References

  1. Alimasi, N., Takahashi, S., and Enomoto, H., 2012, Development of a mobile optical system to detect road-freezing conditions. Bulletin of Glaciological Research, 30, 41-51.
  2. Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., and Ware, R.H., 1992, GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 97(D14), 15787-15801.
  3. Chapman, L. and Thornes, J.E., 2011, What spatial resolution do we need for a route-based road weather decision support system?. Theoretical and Applied Climatology, 104, 551-559.
  4. Choudhury, B.J., Schmugge, T.J., Chang, A., and Newton, R.W., 1979, Effect of surface roughness on the microwave emission from soils. Journal of Geophysical Research: Oceans, 84(C9), 5699-5706.
  5. Choy, S., Wang, C.-S., Yeh, T.-K., Dawson, J., Jia, M., and Kuleshov, Y., 2015, Precipitable water vapor estimates in the Australian region from ground-based GPS observations. Advances in Meteorology, 2015(1), 956481.
  6. Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., and El-Rayes, M.A., 1985, Microwave dielectric behavior of wet soil-part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, GE23(1), 35-46.
  7. Evans, S.G., Small, E.E., and Larson, K.M., 2014, Comparison of vegetation phenology in the Western USA determined from reflected GPS microwave signals and NDVI. International Journal of Remote Sensing, 35(9), 2996-3017.
  8. Hong, S., 2009, Retrieval of refractive index over specular surfaces for remote sensing applications. Journal of Applied Remote Sensing, 3(1), 033560.
  9. Hong, S., 2010a, Surface roughness and polarization ratio in microwave remote sensing. International Journal of Remote Sensing, 31(10), 2709-2716.
  10. Hong, S., 2010b, Global retrieval of small-scale roughness over land surfaces at microwave frequency. Journal of Hydrology, 389(1-2), 121-126.
  11. Hong, S., 2013, Polarization conversion for specular components of surface reflection, IEEE Geoscience and Remote Sensing Letters, 10(6), 1469-1472.
  12. Hufford, G., 1991, A model for the complex permittivity of ice at frequencies below 1 THz. International Journal of Infrared and Millimeter Waves, 12, 677-682.
  13. Jin, S. and Najibi, N., 2014, Sensing snow height and surface temperature variations in Greenland from GPS reflected signals. Advances in Space Research, 53(11), 1623-1633.
  14. Johnson, B.T., Petty, G.W., and Skofronick-Jackson, G., 2012, Microwave properties of ice-phase hydrometeors for radar and radiometers: Sensitivity to model assumptions. Journal of Applied Meteorology and Climatology, 51(12), 2152-2171.
  15. Jonsson, P., 2011, Remote sensor for winter road surface status detection, In. Proc. SENSORS, 2011 IEEE, 1285-1288.
  16. Koch, F., Schlenz, F., Prasch, M., Appel, F., Ruf, T., and Mauser, W., 2016, Soil moisture retrieval based on GPS signal strength attenuation. Water, 8(7), 276.
  17. Komjathy, A., Maslanik, J., Zavorotny, V.U., Axelrad, P., and Katzberg, S.J., 2000, Sea ice remote sensing using surface reflected GPS signals, In. Proc. IEEE 2000 International Geoscience and Remote Sensing Symposium (IGARSS 2000). Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, 2855-2857.
  18. Larson, K.M., 2016, GPS interferometric reflectometry: Applications to surface soil moisture, snow depth, and vegetation water content in the Western United States. Wiley Interdisciplinary Reviews: Water, 3(6), 775-787.
  19. Larson, K.M. and Nievinski, F.G., 2013, GPS snow sensing: Results from the Earthscope plate boundary observatory. GPS Solutions, 17, 41-52.
  20. Larson, K.M. and Small, E.E., 2014, Normalized microwave reflection index: A vegetation measurement derived from GPS networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5), 1501-1511.
  21. Larson, K.M., Gutmann, E.D., Zavorotny, V.U., Braun, J.J., Williams, M.W., and Nievinski, F.G., 2009, Can we measure snow depth with GPS receivers?. Geophysical Research Letters, 36(17), L17502.
  22. Larson, K.M., Small, E.E., Gutmann, E., Bilich, A., Axelrad, P., and Braun, J., 2008, Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solutions, 12, 173-177.
  23. Liu, T., Pan, Q., Sanchez, J., Sun, S., Wang, N., and Yu, H., 2017, Prototype decision support system for black ice detection and road closure control. IEEE Intelligent Transportation Systems Magazine, 9(2), 91-102.
  24. Ma, X. and Ruan, C., 2020, Method for black ice detection on roads using tri-wavelength backscattering measurements. Applied Optics, 59(24), 7242-7246.
  25. Mahoney III, W.P. and Myers, W.L., 2003, Predicting weather and road conditions: Integrated decision-support tool for winter road-maintenance operations. Transportation Research Record, 1824(1), 98-105.
  26. Najafi, M., Gorgin, S., Fallah, M.K., Jaberipur, G., and Lee, J.A., 2024, Low-power black-ice detection for safety critical edge devices on roads, In. Proc. 2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN), 636-641.
  27. Nakanishi, Y. and Kushihi, Y., 2021, U.S. Patent Application No. 16/647,046.
  28. Njoku, E.G. and Entekhabi, D., 1996, Passive microwave remote sensing of soil moisture. Journal of Hydrology, 184(1-2), 101-129.
  29. Norrman, J., Eriksson, M., and Lindqvist, S., 2000, Relationships between road slipperiness, traffic accident risk and winter road maintenance activity. Climate Research, 15(3), 185-193.
  30. Parkinson, B.W. and Spilker, J.J., 1996, Global Positioning System: Theory and applications, volume I. In Parkinson, B.W. (ed.), Introduction and heritage of Navstar, the global positioning system. progress in astronautics and aeronautics No. 163, American Institute of Aeronautics and Astronautics, Inc., Washington, DC, USA, 11.
  31. Pilli-Sihvola, Y., Toivonen, K., Haavasoja, T., Haavisto, V., and Nylander, P., 2006, New approach to road weather: Measuring slipperiness, In. Proc. The 13th Standing International Road Weather Commission (SIRWEC) conference, 13-18.
  32. Piuzzi, E., Cannazza, G., Cataldo, A., Chicarella, S., De Benedetto, E., Frezza, F., Pisa, S., Prontera, S., and Timpani, F., 2015, Measurement system for evaluating dielectric permittivity of granular materials in the 1.7-2.6-GHz band. IEEE Transactions on Instrumentation and Measurement, 65(5), 1051-1059.
  33. Stogryn, A., 1971,. Equations for calculating the dielectric constant of saline water (correspondence). IEEE Transactions on Microwave Theory and Techniques, 19(8), 733-736.
  34. Ulaby, F.T., Moore, R.K., and Fung, A.K., 1982, Microwave remote sensing: active and passive. Volume 2 - radar remote sensing and surface scattering and emission theory.
  35. Wu, S.T. and Fung, A.K., 1972, A noncoherent model for microwave emissions and backscattering from the sea surface. Journal of Geophysical Research, 77(30), 5917-5929.
  36. Zavorotny, V.U. and Voronovich, A.G., 2000, Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 951-964.