DOI QR코드

DOI QR Code

Soil Moisture Retrieval Method Utilizing GPS Ground Reflection Signals

  • Young-Joo Kwon (Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science and Technology) ;
  • Hyun-Ju Ban (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Sumin Ryu (Satellite Application Division, Korea Aerospace Research Institute) ;
  • Suna Jo (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Han-Sol Ryu (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Yerin Kim (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Jeong-Eun Park (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Yun-Jeong Choi (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Kyung-Hoon Han (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Yeonjun Kim (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Sungwook Hong (Department of Environment, Energy, and Geoinfomatics, Sejong University)
  • Received : 2024.07.16
  • Accepted : 2024.08.18
  • Published : 2024.08.31

Abstract

This study proposes a soil moisture retrieval method from ground reflection signals received by Global Positioning System (GPS) antenna modules consisting of an up-looking (UP) right-hand circular polarization (RHCP) and two down-looking (DW) RHCP and left-hand circular polarization (LHCP) signals. Field experiments at four different surface types (asphalt, grassland, dry soil, and moist soil) revealed that the DW RHCP and LHCP signals are affected by antenna height and multipath interference signals. The strength differences between the DW LHCP and UP RHCP signals were in good agreement with the DW LHCP signals. Methodologically, this study applied a spectrum analysis to the detrended surface-reflected signals for RHCP and LHCP. The study indicated that the down-looking antenna exhibited greater sensitivity to reflected GPS signals than the up-looking antenna. We demonstrated the feasibility of estimating soil moisture using GPS signals, by comparing LHCP signals received by the down-looking antenna with theoretical values. This study presents a novel method for estimating soil moisture in vegetated areas, leveraging the advantage of cross-polarization comparisons to achieve stronger signal strength than single-polarization reflection signals. With further research, including long-term observations and detailed analysis, the proposed method has the potential to enhance performance significantly.

Keywords

Acknowledgement

The authors thank anonymous reviewers for their helpful and constructive comments on the manuscript. This study was funded by the Korea Meteorological Administration Research and Development Program under Grant KMI2018-05710 and supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIER-2024-01-02-035).

References

  1. Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., and El-Rayes, M.A., 1985, Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, GE23(1), 35-46.
  2. Evans, S.G., Small, E.E., and Larson, K.M., 2014, Comparison of vegetation phenology in the western USA determined from reflected GPS microwave signals and NDVI. International Journal of Remote Sensing, 35(9), 2996-3017.
  3. Hong, S., 2009, Retrieval of refractive index over specular surfaces for remote sensing applications, Journal of Applied Remote Sensing., 3(1), 1-8.
  4. Hong, S., 2013, Polarization conversion for specular components of surface reflection, IEEE Geoscience and Remote Sensing Letters, 10(6), 1469-1472.
  5. Jackson, T.J. and Schmugge, T.J., 1991, Vegetation effects on the microwave emission of soils. Remote Sensing of Environment, 36(3), 203-212.
  6. Jacobson, M.D., 2008, Dielectric-covered ground reflectors in GPS multipath reception-Theory and measurement. IEEE Geoscience and Remote Sensing Letters, 5(3), 396-399.
  7. Jin, S. and Komjathy, A., 2010, GNSS reflectometry and remote sensing: New objectives and results. Advances in Space Research, 46(2), 111-117.
  8. Komjathy, A., Zavorotny, V.U., Axelrad, P., Born, G.H., and Garrison, J.L., 2000, GPS signal scattering from sea surface: Wind speed retrieval using experimental data and theoretical model. Remote Sensing of Environment, 73(2), 162-174.
  9. Larson, K.M., Braun, J.J., Small, E.E., Zavorotny, V.U., Gutmann, E.D., and Bilich, A.L., 2009a, GPS multipath and its relation to near-surface soil moisture content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 91-99.
  10. Larson, K.M., Gutmann, E.D., Zavorotny, V.U., Braun, J.J., Williams, M.W., and Nievinski, F.G., 2009b, Can we measure snow depth with GPS receivers?. Geophysical Research Letters, 36(17), L17502.
  11. Larson, K.M., Lofgren, J.S., and Haas, R., 2013, Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8), 1301-1310.
  12. Larson, K.M., Small, E.E., Gutmann, E., Bilich, A., Axelrad, P., and Braun, J., 2008, Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solutions, 12, 173-177.
  13. Lomb, N.R., 1976, Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39, 447-462.
  14. McCreight, J.L., Small, E.E., and Larson, K.M., 2014, Snow depth, density, and SWE estimates derived from GPS reflection data: Validation in the western US. Water Resources Research, 50(8), 6892-6909.
  15. Mo, T., Choudhury, B.J., Schmugge, T.J., Wang, J.R., and Jackson, T.J., 1982, A model for microwave emission from vegetation-covered fields. Journal of Geophysical Research: Oceans, 87(C13), 11229-11237.
  16. Munoz-Martin, J.F., Perez, A., Camps, A., Ribo, S., Cardellach, E., Stroeve, J., Nandan, V., Itkin, P., Tonboe, R., Hendricks, S., Huntemann, M., Spreen, G., and Pastena, M., 2020, Snow and ice thickness retrievals using GNSS-R: Preliminary results of the MOSAiC experiment. Remote Sensing, 12(24), 4038.
  17. Nievinski, F.G. and Larson, K.M., 2014, Forward modeling of GPS multipath for near-surface reflectometry and positioning applications. GPS Solutions, 18, 309-322.
  18. Njoku, E.G. and Entekhabi, D., 1996, Passive microwave remote sensing of soil moisture. Journal of Hydrology, 184(1-2), 101-129.
  19. Pan, L., Zhang, X., Li, X., Li, X., Lu, C., Liu, J., and Wang, Q., 2019, Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo. Advances in Space Research, 63(9), 2696-2710.
  20. Parkinson, B.W. and Spilker, J.J., 1996, Global Positioning System: Theory and Applications, Volume I. In Parkinson, B.W. (ed.), Introduction And Heritage Of Navstar, The Global Positioning System. Progress in astronautics and aeronautics No. 163, American Institute of Aeronautics and Astronautics, Inc., Washington, DC, USA, 3-28.
  21. Piuzzi, E., Cannazza, G., Cataldo, A., Chicarella, S., De Benedetto, E., Frezza, F., Pisa, S., Prontera, S., and Timpani, F., 2015, Measurement system for evaluating dielectric permittivity of granular materials in the 1.7-2.6-GHz band. IEEE Transactions on Instrumentation and Measurement, 65(5), 1051-1059.
  22. Regmi, A., Berg, M., and Parssinen, A., 2019, A method for ice thickness characterization using GNSS C/N0 data. Proceedings of the 2019 8th Asia-Pacific conference on antennas and propagation. IEEE, Incheon, Korea, 534-538.
  23. Regmi, A., Parssinen, A., and Berg, M., 2020, Sea surface characterization using dual polarized GNSS reception system. Proceedings of the 2020 14th European conference on antennas and propagation. IEEE, Copenhagen, Denmark, 1-5.
  24. Rodriguez-Alvarez, N., Bosch-Lluis, X., Camps, A., Vall-Llossera, M., Valencia, E., Marchan-Hernandez, J.F., and Ramos-Perez, I., 2009, Soil moisture retrieval using GNSS-R techniques: Experimental results over a bare soil field. IEEE Transactions on Geoscience and Remote Sensing, 47(11), 3616-3624.
  25. Rodriguez-Alvarez, N., Munoz-Martin, J.F. and Morris, M., 2023, Latest advances in the global navigation satellite system-reflectometry (GNSS-R) field. Remote Sensing, 15(8), 2157.
  26. Scargle, J.D., 1982, Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 263, 835-853.
  27. Wigneron, J.P., Jackson, T.J., O'neill, P., De Lannoy, G., de Rosnay, P., Walker, J.P., Ferrazzoli, P., Mironov, V., Bircher, S., Grant, J.P., and Kurum, M., 2017, Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sensing of Environment, 192, 238-262.
  28. Zavorotny, V.U. and Voronovich, A.G., 2000, Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 951-964.