Acknowledgement
이 논문은 2021 년도 정부(한국전자통신연구원)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2021-0-00320, 실 공간 대상 XR 생성 및 변형/증강 기술 개발
References
- Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020. Character Controllers Using Motion VAEs. ACM Trans. Graph. 39, 4, Article 40 (July 2020), 12 pages. https://doi.org/10.1145/3386569.3392422
- Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. 2017. DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM Trans. Graph. 36, 4, Article 41 (July 2017), 16 pages. DOI: http://dx.doi.org/10.1145/3072959.3073602
- Jaedong Lee, Jungdam Won, and Jehee Lee. 2018. Crowd Simulation by Deep Reinforcement Learning. In Proceedings of Motion, Interaction and Games, Limassol, Cyprus, November 8-10, 2018, 7 pages. DOI: 10.1145/3230744.3230782
- V. Lumelsky and T. Skewis, "Incorporating range sensing in the robot navigation function," IEEE Transactions on Systems Man and Cybernetics, vol. 20, pp. 1058 - 1068, 1990. https://doi.org/10.1109/21.59969
- V. Lumelsky and Stepanov, "Path-planning srategies for a point mobile automaton amidst unknown obstacles of arbitrary shape," in Autonomous Robots Vehicles, I.J. Cox, G.T. Wilfong (Eds), New York, Springer, pp. 1058 - 1068, 1990.
- O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," International Journal of Robotics Research, vol. 5, no. 1, pp. 90-98, 1995. https://doi.org/10.1177/027836498600500106
- J. Borenstein and Y. Koren, "The vector field histogram - fast obstacle avoidance for mobile robots," IEEE Transaction on Robotics and Automation, vol. 7, no. 3, pp. 278 - 288, 1991. https://doi.org/10.1109/70.88137
- Volodymyr Mnih, Koray Kavukcuoglu. 2015. Human-level control through deep reinforcement learning. Nature 518 (2015), 529-533. https://doi.org/10.1038/nature14236
- David Silver, Aja Huang. 2016. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 529, 7587 (2016), 484-489. TensorFlow. 2015. TensorFlow: Large-Scale Machine L https://doi.org/10.1038/nature16961
- LEE Y., WAMPLER K., BERNSTEIN G., POPOVIC J., POPOVIC Z.: Motion fields for interactive character locomotion. In ACM SIGGRAPH Asia 2010 papers. 2010, pp. 1-8.
- LEVINE S., WANG J. M., HARAUX A., POPOVIC Z., KOLTUN V.: Continuous character control with low-dimensional embeddings. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1
- COROS S., BEAUDOIN P., VAN DE PANNE M.: Robust task based control policies for physics-based characters. In ACM SIGGRAPH Asia 2009 papers. 2009, pp. 1-9.
- PENG X. B., BERSETH G., VAN DE PANNE M.: Dynamic terrain traversal skills using reinforcement learning. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1-11.
- BROCKMAN G., CHEUNG V., PETTERSSON L., SCHNEIDER J., SCHULMAN J., TANG J., ZAREMBA W.: Openai gym. arXiv preprint arXiv:1606.01540 (2016).
- DUAN Y., CHEN X., HOUTHOOFT R., SCHULMAN J., ABBEEL P.: Benchmarking deep reinforcement learning for continuous control. In International conference on machine learning (2016), PMLR, pp. 1329-1338.
- LEE S., PARK M., LEE K., LEE J.: Scalable muscle-actuated human simulation and control. ACM Transactions On Graphics (TOG) 38, 4 (2019), 1-13.
- Ilya Kostrikov. 2018. PyTorch Implementations of Reinforcement Learning Algorithms. https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.
- Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. DeepMimic: Example-Guided Deep Reinforcement Learning of Physics Based Character Skills. ACM Trans. Graph. 37, 4, Article 143 (August 2018), 18 pages. https://doi.org/10.1145/3197517.3201311
- He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode Adaptive Neural Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (August 2018), 11 pages. https://doi.org/10.1145/3197517.3201366
- Taesoo Kwon, Taehong Gu, Jaewon Ahn, and Yoonsang Lee. 2023. Adaptive Tracking of a Single-Rigid-Body Character in Various Environments. In SIGGRAPH Asia 2023 Conference Papers (SA Conference Papers '23), December 12-15, 2023, Sydney, NSW, Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3610548.3618187