과제정보
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/ 2022/01/21994).
참고문헌
- Abdrashitova, R.N., Bozhenkova, G.S., Ponomarev, A.A., Gilya-Zetinov, A.G., Markov, A.A. and Zavatsky, M.D. (2023), "Synthesis of Zno doped multi walled carbon nanotubes (Mwnts) for dyes degradation and water purification", Water Conserv. Manag., 7(1), 01-05. https://doi.org/10.26480/wcm.01.2023.01.05
- Ahmed, S.E. and Rashed, Z.Z. (2021), "Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels", Thermal Sci., 25(6 Part A), 4241-4255. https://doi.org/10.2298/TSCI191014144A
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
- Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-243. https://doi.org/10.12989/anr.2018.6.3.219
- Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., Int. J., 8(4), 277-282 https://doi.org/10.12989/anr.2020.8.4.277.
- Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
- Alwabli, A.S., Kaci, A., Bellifa, H., Bousahla, A.A., Tounsi, A., Alzahrani, D.A., Abulfaraj, A.A., Bourada, F., Benrahou, K.H., Tounsi, A. and Mahmoud, S.R. (2021), "The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory", Adv. Nano Res., Int. J., 10(1), 15-24. https://doi.org/10.12989/anr.2021.10.1.015
- Andersson, H.I. (1992), "MHD flow of a viscoelastic fluid past a stretching surfac", Acta Mech., 95, 227-230. https://doi.org/10.1007/BF01170814
- Andersson, H.I. (1995), "An exact solution of the Navier-Stokes equations for magnetohydrodynamic flow", Acta Mech, 113, 241-244. https://doi.org/10.1007/BF01212646
- Andersson, H.I. (2002), "Slip flow past a stretching surface", Acta Mech., 158, 121-125. https://doi.org/10.1007/BF01463174
- Asghar, S., Naeem, M.N., Khadimallah, M.A., Hussain, M., Iqbal, Z. and Tounsi, A. (2020a), "Effect of chiral structure for free vibration of DWCNTs: Modal analysis", Adv. Concrete Constr., Int. J., 9(6), 577-588. https://doi.org/10.12989/acc.2020.9.6.577
- Asghar, S., Khadimallah, M.A., Naeem, M.N., Ghamkhar, M., Khedher, K.M., Hussain, M., Bouzgarrou, S.M., Ali, Z., Iqbal, Z., Mahmoud, S.R. and Algarni, A. (2020b), "Small scale computational vibration of double-walled CNTs: Estimation of nonlocal shell model", Adv. Concrete Constr., 10(4), 345-355. https://doi.org/10.12989/acc.2020.10.4.345
- Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-hydrodynamics (MHD) bioconvection nanofluid slip flow over a stretching sheet with microorganism concentration and bioconvection Peclet number effects", Am. J. Mech. Indust. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11
- Bai, B., Chen, J., Zhang, B. and Wang, H. (2024), "Migration trajectories and blocking effect of the fine particles in porous media based on particle flow simulation", AIP Advances, 14(4), 045036. https://doi.org/10.1063/5.0199046
- Beg, O.A., Mabood, F. and Nazrul Islam, M. (2015), "Homotopy simulation of nonlinear unsteady rotating nanofluid flow from a spinning body", Int. J. Eng. Mathe., 13(4), 1-15. http://dx.doi.org/10.1155/2015/272079
- Buongiorno, J. (2006), "Convective Transport in Nanofluids", J. Heat Transfer, 128, 240-250. http://dx.doi.org/10.1115/1.2150834
- Casson, N. (1959), "A flow equation for pigment-oil suspensions of the printing ink type", Rheol. Disperse Syst., pp. 84-104.
- Chaim, T.C. (1994), "Stagnation-point flow towards a stretching plate", J. Phys. Soc. Japan, 63(6), 2443-2444. https://journals.jps.jp/doi/10.1143/JPSJ.63.2443
- Christopher, C.G., Pachaivannan, P. and Elamparithi, P.N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., Int. J., 15(2), 85-96. https://doi.org/10.12989/acc.2023.15.2.085
- Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Methods Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
- Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3
- Crane, L.J. (1970), "Flow past a stretching plate", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 21(4), 645-647. https://doi.org/10.1007/bf01587695
- Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
- Devi, C.S., Takhar, H.S. and Nath, G. (1986), "Unsteady, three-dimensional, boundary-layer flow due to a stretching surface", Int. J. Heat Mass Transfer, 29(12), 1996-1999. https://doi.org/10.1016/0017-9310(86)90020-7
- Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Concrete Constr., Int. J., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481
- Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269
- Gbadeyan, J.A., Titiloye, E.O. and Adeosun, A.T. (2020), "Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip", Heliyon, 6(1), e03076. https://doi.org/10.1016/j.heliyon.2019.e03076
- Han, Q. and Chu, F. (2015), "Nonlinear dynamic model for skidding behavior of angular contact ball bearings", J. Sound Vib., 354, 219-235. https://doi.org/10.1016/j.jsv.2015.06.008
- Han, Q., Li, X. and Chu, F. (2018), "Skidding behavior of cylindrical roller bearings under time-variable load conditions", Int. J. Mech. Sci., 135, 203-214. https://doi.org/10.1016/j.ijmecsci.2017.11.013
- Iqbal, W., Jalil, M., Khadimallah, M.A., Ayed, H., Naeem, M.N., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ghandourah, E., Taj, M. and Tounsi, A. (2020), "Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder", Steel Compos. Struct., Int. J., 36(5), 603-615. https://doi.org/10.12989/scs.2020.36.5.603
- Iqbal, W., Jalil, M., Khadimallah, M.A., Hussain, M., Naeem, M.N., Al Naim, A.F. and Tounsi, A. (2021), "Interaction of casson nanofluid with Brownian motion: Temperature profile with shooting method", Adv. Nano Res., Int. J., 10(4), 349-357. https://doi.org/10.12989/anr.2021.10.4.349
- Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", Appl. Mathe. Model., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036
- Jiang, Z., Shi, H., Tang, X. and Qin, J. (2023), "Recent advances in droplet microfluidics for single-cell analysis", TrAC Trends in Analytical Chemistry, 159, 116932. https://doi.org/10.1016/j.trac.2023.116932
- Khadimallah, M.A., Safeer, M., Taj, M., Ayed, H., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ahmad, M. and Tounsi, A. (2020a), "The effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell: A mechanical model", Adv. Concrete Constr., Int. J., 10(2), 141-149. https://doi.org/10.12989/acc.2020.10.2.141
- Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020b), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., Int. J., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137
- Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Advances, 5(12), 127202. http://dx.doi.org/10.1063/1.4937346
- Li, Z., Sheikholeslami, M., Mittal, A.S., Shafee, A. and Haq, R.U. (2019), "Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method", Eur. Phys. J. Plus, 134, 30. https://doi.org/10.1140/epjp/i2019-12406-8
- Luo, J., Wang, G., Li, G. and Pesce, G. (2022), "Transport infrastructure connectivity and conflict resolution: a machine learning analysis", Neural Comput. Applicat., 34(9), 6585-6601. https://doi.org/10.1007/s00521-021-06015-5
- Magyari, E. and Keller, B. (2000), "Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls", Eur. J. Mech.-B/Fluids, 19(1), 109-122. https://doi.org/10.1016/S0997-7546(00)00104-7
- Mahmoud, M.A. and Waheed, S.E. (2012), "MHD stagnation point flow of a micro polar fluid towards a moving surface with radiation", Meccanica, 47(5), 1119-1130. https://doi.org/10.1007/s11012-011-9498-x
- Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Thermal Sci., 49(9), 1813-1820. https://doi.org/10.1016/J.IJTHERMALSCI.2011.02.019
- Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s13204-013-0267-0
- Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
- Muhammad, A. and Shahzad, A. (2011), "Radiation effects on MHD boundary layer stagnation point flow towards a heated shrinking sheet", World Appl. Sci. J., 13(7), 1748-1756. https://doi.org/10.5897/IJPS2014.4177
- Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transfer, 135(4), p. 041701. https://doi.org/10.1115/1.4023038
- Mutuku, W.N. and Makinde, O.D. (2014), "Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms", Comput. Fluids, 95, 88-97. https://doi.org/10.1016/j.compfluid.2014.02.026
- Nadeem, S., Hussain, S.T. and Lee, C. (2013), "Flow of a Williamson fluid over a stretching sheet", Brazil. J. Chem. Eng., 30(3), 619-625. http://dx.doi.org/10.1590/S0104-66322013000300019
- Nayak, M.K., Prakash, J., Tripathi, D., Pandey, V.S., Shaw, S. and Makinde, O.D. (2020), "3D Bioconvective multiple slip flow of chemically reactive Casson nanofluid with gyrotactic micro-organisms", Heat Transfer-Asian Res., 49(1), 135-153. https://doi.org/10.1002/htj.21603
- Ponomarev, A.A., Nurullina, T.S. and Zavatsky, M.D. (2022), "Remediation Of Cr (Vi) in Water Using Biosynthesized Palladium Nano-Materials Loaded (Shewanella Oneidensis) Mr-1", Water Conserv. Manag., 6(2), 146-153. https://doi.org/10.26480/wcm.02.2022.146.153
- Rajagopal, K.R. (1995), "On boundary conditions for fluids of the differential type", Navier-Stokes Equations and Related Nonlinear Problems, 273-278. https://doi.org/10.1007/978-1-4899-1415-6_22
- Rajeswari, V. and Nath, G. (1992), "Unsteady flow over a stretching surface in a rotating fluid", Int. J. Eng. Sci., 30(6), 747-756. https://doi.org/10.1016/0020-7225(92)90104-O
- Rehman, A. (2015), "Boundary layer flow and heat transfer of micropolar fluid over a vertical exponentially stretched cylinder", Appl. Compos. Math., 4(6), 424-430. http://dx.doi.org/10.11648/j.acm.20150406.15
- Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555
- Sailaja, S.V., Shanker, B. and Raju, R.S. (2018), "Finite element analysis of magneto-hydrodynamic casson fluid flow past a vertical plate with the impact of angle of inclination", J. Nanofluids, 7(2), 383-395. https://doi.org/10.1166/JON.2018.1456
- Sakiadis, B.C. (1961), "Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow", AIChE J., 7(1), 26-28. https://doi.org/10.1002/aic.690070108
- Salahuddin, T., Malik, M.Y., Hussain, A., Bilal, S. and Awais, M. (2016), "MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach", J. Magnet. Magnet. Mater., 401, 991-997. https://doi.org/10.1016/j.jmmm.2015.11.022
- Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
- Santra, B., Dandapat, B.S. and Andersson, H.I. (2007), "Axisymmetric stagnation-point flow over a lubricated surface", Acta Mechanica, 194(1-4), 1-10. https://doi.org/10.1007/s00707-007-0484-2
- Shah, Z., Kumam, P. and Deebani, W. (2020), "Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation", Scientific Reports, 10(1), 1-14. https://www.nature.com/articles/s41598-020-61125-9 https://doi.org/10.1038/s41598-019-56847-4
- Sharif, H., Naeem, M.N., Khadimallah, M.A., Ayed, H., Bouzgarrou, S.M., Al Naim, A.F., Hussain, S., Hussain, M., Iqbal, Z. and Tounsi, A. (2020), "Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism", Adv. Concrete Constr., Int. J., 10(4), 357-367. https://doi.org/10.12989/acc.2020.10.4.357
- Sharma, P.R. and Singh, G. (2009), "Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet", J. Appl. Fluid Mech., 2(1), 13-21. https://www.sid.ir/en/journal/ViewPaper.aspx?id=125718
- Shu, X., Li, J. and Shen, M. (2022), "A coupled 2D RBSM-Voronoi model for simulating fracture behaviors of plain concrete components", Adv. Concrete Constr., Int. J., 14(6), 391-400. https://doi.org/10.12989/acc.2022.14.6.391
- Siddappa, B. and Abel, S. (1985), "Non-Newtonian flow past a stretching plate", J. Appl. Math. Phys. (ZAMP), 36, 89-98. http://dx.doi.org/10.1007/BF00944900
- Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R. S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transfer, 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
- Souayeh, B., Reddy, M.G., Sreenivasulu, P., Poornima, T.M.I.M., Rahimi-Gorji, M. and Alarifi, I.M. (2019), "Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle", J. Molecul. Liquids, 284, 163-174. https://doi.org/10.1016/j.molliq.2019.03.151
- Sugiyama, T., Dabwan, A.H.A., Furukawa, M., Tateishi, I., Katsumata, H. and Kaneco, S. (2021), "Development of Carbon Nanotube as Highly Active Photocatatlytic Adsorbent for Treatment of Acid Red 88 Dye", Water Conserv. Manag., 5(1), 26-29.
- Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fluids, 35(3), 32002. https://doi.org/10.1063/5.0138294
- Sun, L., Wang, G. and Zhang, C. (2024), "Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper", J. Intell. Mater. Syst. Struct., 35(6), 661-672. https://doi.org/10.1177/1045389X231222999
- Taj, M., Khadimallah, M.A., Hussain, M., Khedher, K.M., Shamim, R.A., Ahmad, M. and Tounsi, A. (2020), "Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium", Smart Struct. Syst., Int. J., 26(6), 809-817. https://doi.org/10.12989/sss.2020.26.6.809
- Taj, M., Khadimallah, M.A., Hussain, M., Mahmood, S., Safeer, M., Al Naim, A.F. and Ahmad, M. (2021), "Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments", Adv. Concrete Constr., Int. J., 11(1), 81-88. https://doi.org/10.12989/acc.2021.11.1.081
- Takhar, H.S., Agarwal, R.S., Bhargava, R. and Jain, S. (1998), "Mixed convective non-steady 3-dimensional micropolar fluid flow at a stagnation point", Heat Mass Transfer, 33(5), 443-448. https://doi.org/10.1007/s002310050213/metrics
- Tiwari, R.K. and Das, M.K. (2007), "Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids", Int. J. Heat Mass Transfer, 50(9-10), 2002-2018. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
- Vajravelu, K. and Hadjinicolaou, A. (1993), "Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation", Int. Commun. Heat Mass Transfer, 20(3), 417-430. https://doi.org/10.1016/0735-1933(93)90026-R
- Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to stretching cylinder", Int. J. Non-Linear Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.014
- Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023a), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virtual Phys. Prototyp., 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701
- Wang, Z., Wang, S., Wang, X. and Luo, X. (2023b), "Permanent Magnet-Based Superficial Flow Velometer With Ultralow Output Drift", IEEE Transact. Instrum. Measur., 72, 1-12. https://doi.org/10.1109/TIM.2023.3304692
- Wang, Q., Li, P., Rocca, P., Li, R., Tan, G., Hu, N. and Xu, W. (2023c), "Interval-based tolerance analysis method for petal reflector antenna with random surface and deployment errors", IEEE Transact. Anten. Propag., 71(11), 8556-8569. https://doi.org/10.1109/TAP.2023.3314097
- Wang, Z., Zhao, Q., Yang, Z., Liang, R. and Li, Z. (2024), "High-speed photography and particle image velocimetry of cavitation in a Venturi tube", Phys. Fluids, 36(4), 045147. https://doi.org/10.1063/5.0203411
- Wu, H., Bai, B. and Liu, J. (2024), "Temperature-driven coupled transport of pollutants and suspended particles established by granular thermodynamics", Int. J. Heat Mass Transfer, 228, 125645. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125645
- Zhang, Y., Cheng, M., Liu, X., Rong, G., Sheng, Z., Shen, D., Wu, K. and Wang, J. (2024), "The influence of plug nozzle and Laval nozzle on the flow field and performance of non-premixed rotating detonation combustor", Phys. Fluids, 36(5), 056107. https://doi.org/10.1063/5.0207508