DOI QR코드

DOI QR Code

Engineering properties of pervious concretes produced with recycled aggregate at different aggregate-to-cement ratio

  • Briar K. Esmail (Department of Civil Engineering, Faculty of Engineering, Koya University) ;
  • Najmadeen M. Saeed (Civil Engineering Department, University of Raparin) ;
  • Soran R. Manguri (Civil Engineering Department, University of Raparin) ;
  • Mustafa Gunal (Civil Engineering Department, Gaziantep University)
  • 투고 : 2023.09.29
  • 심사 : 2024.06.21
  • 발행 : 2024.01.25

초록

Due to its capacity to address urgent environmental challenges connected to urbanization and stormwater management, pervious concrete, a sustainable and innovative material, has attracted a lot of attention recently. The aim of this study was to find the engineering characteristics of pervious concrete made from recycled aggregate (RA) at various aggregate-to-cement ratios (A/C) and the addition of 5% (by weight of total aggregate) of both natural and recycled fine aggregate to produce a very sustainable concrete product for a variety of applications. The three distinct aggregate-to-cement ratios, 6, 5, and 4, were used to produce pervious concrete using recycled aggregate in the research approach. The ratio of water to cement (w/c) was maintained at 0.3. Pervious concrete was created using single-sized recycled aggregate that passed through a 12.5 mm sieve and was held on a 9.5 mm sieve, as well as natural and recycled sand that passed through a 4 mm sieve. The production of twelve distinct concrete mixtures resulted in the testing of each concrete sample for dry density, abrasion resistance, compressive and splitting tensile strengths, porosity, and water permeability. A statistical method called GLM-ANOVA was also used to assess the characteristics of pervious concrete made using recycled aggregate. According to the experimental results, lowering the aggregate-to-cement ratio enhances the pervious concrete's overall performance. Additionally, a modest amount of fine aggregate boosts mechanical strength while lowering void content and water permeability. However, it was noted that such concretes' mechanical qualities were adversely affected to some extent. The results of this study offer insight into the viability of using recycled aggregates in order to achieve both structural integrity and environmental friendliness, which helps to optimize pervious concrete compositions.

키워드

참고문헌

  1. ACI-522R-10 (2010), Report on Pervious Concrete, ACI 522R-10. 
  2. Anburuvel, A. and Subramaniam, D.N. (2022), "Influence of aggregate gradation and compaction on compressive strength and porosity characteristics of pervious concrete", Int. J. Pave. Eng., 1-14.
  3. ASTM-C29 (2010), Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate; Annual Book of ASTM Standard, PA, USA.
  4. ASTM-C39/C39M-12 (2012), Standard Test Method for Compressive Strength of Cylindrical Test Specimens; Annual book of ASTM standards, American Society for Testing and Materials.
  5. ASTM-C150 (2016), ASTM C150 standard specification for Portland cement; Annual Book of ASTM Standard, PA, USA.
  6. ASTM-C496 (2011), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; Annual Book of ASTM Standard, PA, USA.
  7. ASTM C1754/C1754M.12 (2012), Standard test method for density and void content of hardened pervious concrete; Annual book of ASTM standards, American Society for Testing and Materials.
  8. Carsana, M., Tittarelli, F. and Bertolini, L. (2013), "Use of no-fines concrete as a building material: Strength, durability properties and corrosion protection of embedded steel", Cement Concrete Res., 48, 64-73. https://doi.org/10.1016/j.cemconres.2013.02.006
  9. Chindaprasirt, P., Hatanaka, S., Chareerat, T., Mishima, N. and Yuasa, Y. (2008), "Cement paste characteristics and porous concrete properties", Constr. Build. Mater., 22(5), 894-901. https://doi.org/10.1016/j.conbuildmat.2006.12.007
  10. Cosic, K., Korat, L., Ducman, V. and Netinger, I. (2015), "Influence of aggregate type and size on properties of pervious concrete", Constr. Build. Mater., 78, 69-76. https://doi.org/10.1016/j.conbuildmat.2014.12.073
  11. Crouch, L., Cates, M.A., Dotson, V.J., Honeycutt, K.R. and Badoe, D.A. (2003), "Measuring the effective air void content of Portland cement pervious pavements", Cement Concrete Aggreg., 25(1), CCA10516J. https://doi.org/10.1520/CCA10515J
  12. Crouch, L., Pitt, J. and Hewitt, R. (2007), "Aggregate effects on pervious Portland cement concrete static modulus of elasticity", J. Mater. Civil Eng., 19(7), 561-568. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(561)
  13. DIN52108 (2002), Wear Testing of Inorganic, Nonmetallic Materials Using the Bohme Abrasive Wheel; Deutsches Institut Fur Normung, EV.
  14. Domingo, A., Lazaro, C., Gayarre, F., Serrano, M. and Lopez-Colina, C. (2010), "Long term deformations by creep and shrinkage in recycled aggregate concrete", Mater. Struct., 43, 1147-1160. https://doi.org/10.1617/s11527-009-9573-0
  15. El-Hassan, H., Kianmehr, P. and Zouaoui, S. (2019), "Properties of pervious concrete incorporating recycled concrete aggregates and slag", Constr. Build. Mater., 212, 164-175. https://doi.org/10.1016/j.conbuildmat.2019.03.325
  16. Gesoglu, M., Guneyisi, E., Khoshnaw, G. and Ipek, S. (2014), "Abrasion and freezing-thawing resistance of pervious concretes containing waste rubbers", Constr. Build. Mater., 73, 19-24. https://doi.org/10.1016/j.conbuildmat.2014.09.047
  17. Ghafoori, N. and Dutta, S. (1995), "Laboratory investigation of compacted no-fines concrete for paving materials", J. Mater. Civil Eng., 7(3), 183-191. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:3(183)
  18. Guneyisi, E., Gesoglu, M., Kareem, Q. and Ipek, S. (2016), "Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete", Mater. Struct., 49, 521-536. https://doi.org/10.1617/s11527-014-0517-y
  19. Huang, J., Zhang, Y., Sun, Y., Ren, J., Zhao, Z. and Zhang, J. (2021), "Evaluation of pore size distribution and permeability reduction behavior in pervious concrete", Constr. Build. Mater., 290, 123228. https://doi.org/10.1016/j.conbuildmat.2021.123228
  20. Jiang, Z.W., Sun, Z.P. and Wang, P.M. (2005), "Effects of some factors on properties of porous pervious concrete", J. Build. Mater., 8(5), 513-519.
  21. Juradin, S., Ostojic-Skomrlj, N., Brnas, I. and Prolic, M. (2020), "Influence of binder, aggregate and compaction techniques on the properties of single-sized pervious concrete", Adv. Concrete Constr., Int. J., 10(3), 211-220. https://doi.org/10.12989/acc.2020.10.3.211
  22. Kevern, J.T., Schaefer, V.R., Wang, K. and Suleiman, M.T. (2008), "Pervious concrete mixture proportions for improved freeze-thaw durability", J. ASTM Int., 5(2). https://doi.org/10.1520/JAI101320
  23. Kevern, J.T., Schaefer, V.R. and Wang, K. (2009), "Temperature behavior of pervious concrete systems", Transport. Res. Record, 2098(1), 94-101. https://doi.org/10.3141/2098-1
  24. Khankhaje, E., Salim, M.R., Mirza, J., Hussin, M.W. and Rafieizonooz, M. (2016), "Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate", Constr. Build. Mater., 126, 1054-1065. https://doi.org/10.1016/j.conbuildmat.2016.09.010
  25. Kou, S.-C. and Poon, C.-S. (2015), "Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete", Constr. Build. Mater., 77, 501-508. https://doi.org/10.1016/j.conbuildmat.2014.12.035
  26. Kuo, W.-T., Liu, C.-C. and Su, D.-S. (2013), "Use of washed municipal solid waste incinerator bottom ash in pervious concrete", Cement Concrete Compos., 37, 328-335. https://doi.org/10.1016/j.cemconcomp.2013.01.001
  27. Leon Raj, J. and Chockalingam, T. (2020), "Strength and abrasion characteristics of pervious concrete", Road Mater. Pave. Des., 21(8), 2180-2197. https://doi.org/10.1080/14680629.2019.1596828
  28. Lian, C. and Zhuge, Y. (2010), "Optimum mix design of enhanced permeable concrete-an experimental investigation", Constr. Build. Mater., 24(12), 2664-2671. https://doi.org/10.1016/j.conbuildmat.2010.04.057
  29. Lian, C., Zhuge, Y. and Beecham, S. (2011), "The relationship between porosity and strength for porous concrete", Constr. Build. Mater., 25(11), 4294-4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005
  30. Lori, A.R., Hassani, A. and Sedghi, R. (2019), "Investigating the mechanical and hydraulic characteristics of pervious concrete containing copper slag as coarse aggregate", Constr. Build. Mater., 197, 130-142. https://doi.org/10.1016/j.conbuildmat.2018.11.230
  31. Lu, J.-X., Yan, X., He, P. and Poon, C.S. (2019), "Sustainable design of pervious concrete using waste glass and recycled concrete aggregate", J. Cleaner Product., 234, 1102-1112. https://doi.org/10.1016/j.jclepro.2019.06.260
  32. Maguesvari, M.U. and Narasimha, V. (2013), "Studies on characterization of pervious concrete for pavement applications", Procedia-Social Behav. Sci., 104, 198-207. https://doi.org/10.1016/j.sbspro.2013.11.112
  33. Mangulkar, M. and Jamkar, S. (2013), "Review of particle packing theories used for concrete mix proportioning", Contributory papers, 141.
  34. Meininger, R.C. (1988), "No-fines pervious concrete for paving", Concrete Int., 10(8), 20-27.
  35. Minitab-R12 (2012), Statistical Tool; Quality Plaza, 1829 Pine Hall Rd., State College, PA 16801-3008, USA.
  36. Murao, K., Yuasu, Y., Misima, N. and Hatanaka, S. (2002), "Experimental study on the strength of porous concrete with low quality recycled aggregate", J. Archit. Inst. Japan, 8, 823-824.
  37. Najah, N.S.H., Saloma, S., Hanafiah, H., Nurjannah, S.A., Muliawan, S. and Eric, E. (2021), "Compressive strength, permeability, and porosity analysis of pervious concrete by variation of A/C without fine aggregate", AIP Conference Proceedings.
  38. Neithalath, N. (2004), Development and characterization of acoustically efficient cementitious materials, Purdue University.
  39. Neptune, A.I. and Putman, B.J. (2010), "Effect of Aggregate Size and Gradation on Pervious Concrete Mixtures", ACI Mater. J., 107(6). https://doi.org/10.14359/51664050
  40. Obla, K.H. (2010), "Pervious concrete-An overview", Indian Concrete J., 84(8), 9. https://www.academia.edu/download/62123845/Journal120200217-89712-rw600r.pdf
  41. Poon, C.S., Shui, Z., Lam, L., Fok, H. and Kou, S. (2004), "Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete", Cement Concrete Res., 34(1), 31-36. https://doi.org/10.1016/S0008-8846(03)00186-8
  42. Rizvi, R., Tighe, S.L., Norris, J. and Henderson, V. (2010), "Incorporating recycled concrete aggregate in pervious concrete pavements", Proceeding from the National Transportation Research Board, Ottawa, ON, Canada.
  43. Sahdeo, S.K., Chandrappa, A. and Biligiri, K.P. (2021), "Effect of compaction type and compaction efforts on structural and functional properties of pervious concrete", Transport. Develop. Econom., 7(2), 19. https://doi.org/10.1007/s40890-021-00129-0
  44. Sandoval, G.F. and Pieralisi, R. (2023), "Sustainable aggregate impact on pervious concrete abrasion resistance", Results Eng., 20, 101384. https://doi.org/10.1016/j.rineng.2023.101384
  45. Sathiparan, N., Jeyananthan, P. and Subramaniam, D.N. (2023), "Effect of aggregate size, aggregate to cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: prediction by an analytical model and machine learning techniques", Asian J. Civil Eng., 1-15. https://doi.org/10.1007/s42107-023-00790-3
  46. Schaefer, V., Wang, K., Suleiman, M. and Kevern, J. (2006), "Mix design development for pervious concrete in cold climates", National Concrete Pavement Technology Center, Iowa State University, Ames, IA, USA.
  47. Singh, A., Sampath, P.V. and Biligiri, K.P. (2020), "A review of sustainable pervious concrete systems: Emphasis on clogging, material characterization, and environmental aspects", Constr. Build. Mater., 261, 120491. https://doi.org/10.1016/j.conbuildmat.2020.120491
  48. Taheri, B.M. and Ramezanianpour, A.M. (2021), "Optimizing the mix design of pervious concrete based on properties and unit cost", Adv. Concrete Constr., Int. J., 11(4), 285-298. https://doi.org/10.12989/acc.2021.11.4.285
  49. Tennis, P.D., Leming, M.L. and Akers, D.J. (2004), Pervious concrete pavements; Portland Cement Association Skokie, IL, USA.
  50. Thorpe, D. and Zhuge, Y. (2010), "Advantages and disadvantages in using permeable concrete as a pavement construction material", Proceedings of the 26th Annual Conference of the Association of Researchers in Construction Management (ARCOM 2010). http://www.arcom.ac.uk/publications/procs/ar2010-1341-1350_Thorpe_and_Zhuge.pdf
  51. Torres, A., Hu, J. and Ramos, A. (2015), "The effect of the cementitious paste thickness on the performance of pervious concrete", Constr. Build. Mater., 95, 850-859. https://doi.org/10.1016/j.conbuildmat.2015.07.187
  52. Wang, W. (1997), "Study of Pervious Concrete Strength", Sci. Technol. Build. Mater. China, 6(3), 25-28.
  53. Wang, K., Schaefer, V., Kevern, J. and Suleiman, M. (2006), "Development of mix proportion for functional and durable pervious concrete", NRMCA concrete technology forum: focus on pervious concrete. https://www.researchgate.net/profile/JohnKevern/publication/264841848_Development_of_Mix_Proportion_for_Functional_and_Durable_Pervious_Concrete/links/5682a5d708ae051f9aee703e/Development-of-Mix-Proportion-forFunctional-and-Durable-Pervious-Concrete.pdf
  54. Wang, B., Yan, L., Fu, Q. and Kasal, B. (2021), "A comprehensive review on recycled aggregate and recycled aggregate concrete", Resour. Conserv. Recycl., 171, 105565. https://doi.org/10.1016/j.resconrec.2021.105565
  55. Xiao, J., Huang, Y., Yang, J. and Zhang, C. (2012), "Mechanical properties of confined recycled aggregate concrete under axial compression", Constr. Build. Mater., 26(1), 591-603. https://doi.org/10.1016/j.conbuildmat.2011.06.062
  56. Xiao, J., Poon, C.S., Wang, Y., Zhao, Y., Ding, T., Geng, Y., Ye, T. and Li, L. (2022), "Fundamental behaviour of recycled aggregate concrete-overview I: strength and deformation", Magaz. Concrete Res., 74(19), 999-1010. https://doi.org/10.1680/jmacr.21.00253
  57. Xu, G., Shen, W., Huo, X., Yang, Z., Wang, J., Zhang, W. and Ji, X. (2018), "Investigation on the properties of porous concrete as road base material", Constr. Build. Mater., 158, 141-148. https://doi.org/10.1016/j.conbuildmat.2017.09.151
  58. Yang, J. and Jiang, G. (2003), "Experimental study on properties of pervious concrete pavement materials", Cement Concrete Res., 33(3), 381-386. https://doi.org/10.1016/S0008-8846(02)00966-3
  59. Yang, Z., Ma, W., Shen, W. and Zhou, M. (2008), "The aggregate gradation for the porous concrete pervious road base material", J. Wuhan Univ. Technol.-Mater. Sci. Ed., 23, 391-394. https://doi.org/10.1007/s11595-007-3391-4
  60. Yavuz, H., Ugur, I. and Demirdag, S. (2008), "Abrasion resistance of carbonate rocks used in dimension stone industry and correlations between abrasion and rock properties", Int. J. Rock Mech. Min. Sci., 45(2), 260-267. https://doi.org/10.1016/j.ijrmms.2007.04.003
  61. Yogesh, R.V., Santha, K.G. and Ganesh, K.S. (2023), "Synergistic effect of aggregate gradation band and cement to aggregate ratio on the performance of pervious concrete", J. Build. Eng., 73, 106718. https://doi.org/10.1016/j.jobe.2023.106718
  62. Yu, F., Sun, D., Wang, J. and Hu, M. (2019), "Influence of aggregate size on compressive strength of pervious concrete", Constr. Build. Mater., 209, 463-475. https://doi.org/10.1016/j.conbuildmat.2019.03.140
  63. Zhong, R. and Wille, K. (2016), "Compression response of normal and high strength pervious concrete", Constr. Build. Mater., 109, 177-187. https://doi.org/10.1016/j.conbuildmat.2016.01.051
  64. Zhou, J., Zheng, M., Zhan, Q., Zhou, R., Zhang, Y. and Wang, Y. (2023), "Study on mesostructure and stress-strain characteristics of pervious concrete with different aggregate sizes", Constr. Build. Mater., 397, 132322. https://doi.org/10.1016/j.conbuildmat.2023.132322
  65. Zhuge, Y. (2008), "Comparing the performance of recycled and quarry aggregate and their effect on the strength of permeable concrete", Futures Mech. Struct. Mater. Toowoomba, Australia, 343-349. https://www.researchgate.net/profile/YanZhuge/publication/290554277_Comparing_the_performance_of_recycled_and_quarry_aggregate_and_their_effect_on_the_strength_of_permeable_concrete/links/5cc57ac04585156cd7b6b817/Comparing-the-performance-of-recycled-and-quarryaggregate-and-their-effect-on-the-strength-of-permeableconcrete.pdf